graphrag-accelerator/backend/manage-indexing-jobs.py

157 lines
6.1 KiB
Python
Raw Normal View History

2024-08-09 22:22:49 -04:00
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
"""
Note: This script is intended to be executed as a cron job on kubernetes.
2024-08-09 22:22:49 -04:00
A naive implementation of a job manager that leverages k8s CronJob and CosmosDB
to schedule graphrag indexing jobs on a first-come-first-serve basis (based on epoch time).
2024-08-09 22:22:49 -04:00
"""
import os
import pandas as pd
import yaml
from kubernetes import (
client,
config,
)
2024-12-30 01:59:08 -05:00
from src.api.azure_clients import AzureClientManager
2024-08-09 22:22:49 -04:00
from src.api.common import sanitize_name
2024-12-30 01:59:08 -05:00
from src.logger.logger_singleton import LoggerSingleton
2024-08-09 22:22:49 -04:00
from src.typing.pipeline import PipelineJobState
2024-12-30 01:59:08 -05:00
from src.utils.pipeline import PipelineJob
2024-08-09 22:22:49 -04:00
def schedule_indexing_job(index_name: str):
"""
Schedule a k8s job to run graphrag indexing for a given index name.
"""
try:
config.load_incluster_config()
# get container image name
core_v1 = client.CoreV1Api()
pod_name = os.environ["HOSTNAME"]
pod = core_v1.read_namespaced_pod(
name=pod_name, namespace=os.environ["AKS_NAMESPACE"]
)
# retrieve job manifest template and replace necessary values
job_manifest = _generate_aks_job_manifest(
docker_image_name=pod.spec.containers[0].image,
index_name=index_name,
service_account_name=pod.spec.service_account_name,
)
batch_v1 = client.BatchV1Api()
batch_v1.create_namespaced_job(
body=job_manifest, namespace=os.environ["AKS_NAMESPACE"]
)
except Exception:
2024-12-30 01:59:08 -05:00
reporter = LoggerSingleton().get_instance()
2024-08-09 22:22:49 -04:00
reporter.on_error(
"Index job manager encountered error scheduling indexing job",
)
# In the event of a catastrophic scheduling failure, something in k8s or the job manifest is likely broken.
# Set job status to failed to prevent an infinite loop of re-scheduling
pipelinejob = PipelineJob()
pipeline_job = pipelinejob.load_item(sanitize_name(index_name))
pipeline_job["status"] = PipelineJobState.FAILED
def _generate_aks_job_manifest(
docker_image_name: str,
index_name: str,
service_account_name: str,
) -> dict:
"""Generate an AKS Jobs manifest file with the specified parameters.
The manifest must be valid YAML with certain values replaced by the provided arguments.
"""
# NOTE: this file location is relative to the WORKDIR set in Dockerfile-backend
with open("indexing-job-template.yaml", "r") as f:
manifest = yaml.safe_load(f)
manifest["metadata"]["name"] = f"indexing-job-{sanitize_name(index_name)}"
manifest["spec"]["template"]["spec"]["serviceAccountName"] = service_account_name
manifest["spec"]["template"]["spec"]["containers"][0]["image"] = docker_image_name
manifest["spec"]["template"]["spec"]["containers"][0]["command"] = [
"python",
"run-indexing-job.py",
f"-i={index_name}",
]
return manifest
def list_k8s_jobs(namespace: str) -> list[str]:
"""List all k8s jobs in a given namespace."""
config.load_incluster_config()
batch_v1 = client.BatchV1Api()
jobs = batch_v1.list_namespaced_job(namespace=namespace)
job_list = []
for job in jobs.items:
if job.metadata.name.startswith("indexing-job-") and job.status.active:
job_list.append(job.metadata.name)
return job_list
2024-08-09 22:22:49 -04:00
def main():
"""
There are two places to check to determine if an indexing job should be executed:
* Kubernetes: check if there are any active k8s jobs running in the cluster
* CosmosDB: check if there are any indexing jobs in a scheduled state
Ideally if an indexing job has finished or failed, the job status will be reflected in cosmosdb.
However, if an indexing job failed due to OOM, the job status will not have been updated in cosmosdb.
To avoid a catastrophic failure scenario where all indexing jobs are stuck in a scheduled state,
both checks are necessary.
"""
kubernetes_jobs = list_k8s_jobs(os.environ["AKS_NAMESPACE"])
2024-12-30 01:59:08 -05:00
azure_storage_client_manager = AzureClientManager()
2024-08-09 22:22:49 -04:00
job_container_store_client = (
azure_storage_client_manager.get_cosmos_container_client(
2024-12-30 01:59:08 -05:00
database="graphrag", container="jobs"
2024-08-09 22:22:49 -04:00
)
)
# retrieve status of all index jobs that are scheduled or running
2024-08-09 22:22:49 -04:00
job_metadata = []
for item in job_container_store_client.read_all_items():
if item["status"] == PipelineJobState.RUNNING.value:
# if index job has running state but no associated k8s job, a catastrophic
# failure (OOM for example) occurred. Set job status to failed.
if len(kubernetes_jobs) == 0:
print(
f"Indexing job for '{item['human_readable_index_name']}' in 'running' state but no associated k8s job found. Updating to failed state."
)
pipelinejob = PipelineJob()
pipeline_job = pipelinejob.load_item(item["sanitized_index_name"])
pipeline_job.status = PipelineJobState.FAILED
else:
print(
f"Indexing job for '{item['human_readable_index_name']}' already running. Will not schedule another. Exiting..."
)
exit()
2024-08-09 22:22:49 -04:00
if item["status"] == PipelineJobState.SCHEDULED.value:
2024-09-12 21:41:46 -04:00
job_metadata.append({
"human_readable_index_name": item["human_readable_index_name"],
"epoch_request_time": item["epoch_request_time"],
"status": item["status"],
"percent_complete": item["percent_complete"],
})
# exit if no 'scheduled' jobs were found
2024-08-09 22:22:49 -04:00
if not job_metadata:
print("No jobs found")
exit()
# convert to dataframe for easier processing
2024-08-09 22:22:49 -04:00
df = pd.DataFrame(job_metadata)
# jobs should be run in the order they were requested - sort by epoch_request_time
2024-08-09 22:22:49 -04:00
df.sort_values(by="epoch_request_time", ascending=True, inplace=True)
index_to_schedule = df.iloc[0]["human_readable_index_name"]
print(f"Scheduling job for index: {index_to_schedule}")
schedule_indexing_job(index_to_schedule)
if __name__ == "__main__":
main()