mirror of
https://github.com/Azure-Samples/graphrag-accelerator.git
synced 2025-07-06 16:47:31 +00:00
652 lines
25 KiB
Python
652 lines
25 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# Licensed under the MIT License.
|
|
|
|
import inspect
|
|
import json
|
|
import os
|
|
import traceback
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
import yaml
|
|
from azure.identity import DefaultAzureCredential
|
|
from azure.search.documents import SearchClient
|
|
from azure.search.documents.models import VectorizedQuery
|
|
from fastapi import (
|
|
APIRouter,
|
|
HTTPException,
|
|
)
|
|
from graphrag.api.query import global_search, local_search
|
|
from graphrag.config import create_graphrag_config
|
|
from graphrag.model.types import TextEmbedder
|
|
from graphrag.vector_stores.base import (
|
|
BaseVectorStore,
|
|
VectorStoreDocument,
|
|
VectorStoreSearchResult,
|
|
)
|
|
|
|
from graphrag_app.logger.load_logger import load_pipeline_logger
|
|
from graphrag_app.typing.models import (
|
|
GraphRequest,
|
|
GraphResponse,
|
|
)
|
|
from graphrag_app.typing.pipeline import PipelineJobState
|
|
from graphrag_app.utils.azure_clients import AzureClientManager
|
|
from graphrag_app.utils.common import (
|
|
get_df,
|
|
sanitize_name,
|
|
validate_index_file_exist,
|
|
)
|
|
from graphrag_app.utils.pipeline import PipelineJob
|
|
|
|
query_route = APIRouter(
|
|
prefix="/query",
|
|
tags=["Query Operations"],
|
|
)
|
|
|
|
|
|
@query_route.post(
|
|
"/global",
|
|
summary="Perform a global search across the knowledge graph index",
|
|
description="The global query method generates answers by searching over all AI-generated community reports in a map-reduce fashion. This is a resource-intensive method, but often gives good responses for questions that require an understanding of the dataset as a whole.",
|
|
response_model=GraphResponse,
|
|
responses={200: {"model": GraphResponse}},
|
|
)
|
|
async def global_query(request: GraphRequest):
|
|
# this is a slightly modified version of the graphrag.query.cli.run_global_search method
|
|
if isinstance(request.index_name, str):
|
|
index_names = [request.index_name]
|
|
else:
|
|
index_names = request.index_name
|
|
sanitized_index_names = [sanitize_name(name) for name in index_names]
|
|
sanitized_index_names_link = {
|
|
s: i for s, i in zip(sanitized_index_names, index_names)
|
|
}
|
|
|
|
for index_name in sanitized_index_names:
|
|
if not _is_index_complete(index_name):
|
|
raise HTTPException(
|
|
status_code=500,
|
|
detail=f"{index_name} not ready for querying.",
|
|
)
|
|
|
|
COMMUNITY_REPORT_TABLE = "output/create_final_community_reports.parquet"
|
|
ENTITIES_TABLE = "output/create_final_entities.parquet"
|
|
NODES_TABLE = "output/create_final_nodes.parquet"
|
|
|
|
for index_name in sanitized_index_names:
|
|
validate_index_file_exist(index_name, COMMUNITY_REPORT_TABLE)
|
|
validate_index_file_exist(index_name, ENTITIES_TABLE)
|
|
validate_index_file_exist(index_name, NODES_TABLE)
|
|
|
|
if isinstance(request.community_level, int):
|
|
COMMUNITY_LEVEL = request.community_level
|
|
else:
|
|
# Current investigations show that community level 1 is the most useful for global search. Set this as the default value
|
|
COMMUNITY_LEVEL = 1
|
|
|
|
try:
|
|
links = {
|
|
"nodes": {},
|
|
"community": {},
|
|
"entities": {},
|
|
"text_units": {},
|
|
"relationships": {},
|
|
"covariates": {},
|
|
}
|
|
max_vals = {
|
|
"nodes": -1,
|
|
"community": -1,
|
|
"entities": -1,
|
|
"text_units": -1,
|
|
"relationships": -1,
|
|
"covariates": -1,
|
|
}
|
|
|
|
community_dfs = []
|
|
entities_dfs = []
|
|
nodes_dfs = []
|
|
|
|
for index_name in sanitized_index_names:
|
|
community_report_table_path = (
|
|
f"abfs://{index_name}/{COMMUNITY_REPORT_TABLE}"
|
|
)
|
|
entities_table_path = f"abfs://{index_name}/{ENTITIES_TABLE}"
|
|
nodes_table_path = f"abfs://{index_name}/{NODES_TABLE}"
|
|
|
|
# read the parquet files into DataFrames and add provenance information
|
|
# note that nodes need to be set before communities so that max community id makes sense
|
|
nodes_df = get_df(nodes_table_path)
|
|
for i in nodes_df["human_readable_id"]:
|
|
links["nodes"][i + max_vals["nodes"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["nodes"] != -1:
|
|
nodes_df["human_readable_id"] += max_vals["nodes"] + 1
|
|
nodes_df["community"] = nodes_df["community"].apply(
|
|
lambda x: str(int(x) + max_vals["community"] + 1) if x else x
|
|
)
|
|
nodes_df["title"] = nodes_df["title"].apply(lambda x: x + f"-{index_name}")
|
|
nodes_df["source_id"] = nodes_df["source_id"].apply(
|
|
lambda x: ",".join([i + f"-{index_name}" for i in x.split(",")])
|
|
)
|
|
max_vals["nodes"] = nodes_df["human_readable_id"].max()
|
|
nodes_dfs.append(nodes_df)
|
|
|
|
community_df = get_df(community_report_table_path)
|
|
for i in community_df["community"].astype(int):
|
|
links["community"][i + max_vals["community"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": str(i),
|
|
}
|
|
if max_vals["community"] != -1:
|
|
col = community_df["community"].astype(int) + max_vals["community"] + 1
|
|
community_df["community"] = col.astype(str)
|
|
max_vals["community"] = community_df["community"].astype(int).max()
|
|
community_dfs.append(community_df)
|
|
|
|
entities_df = get_df(entities_table_path)
|
|
for i in entities_df["human_readable_id"]:
|
|
links["entities"][i + max_vals["entities"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["entities"] != -1:
|
|
entities_df["human_readable_id"] += max_vals["entities"] + 1
|
|
entities_df["name"] = entities_df["name"].apply(
|
|
lambda x: x + f"-{index_name}"
|
|
)
|
|
entities_df["text_unit_ids"] = entities_df["text_unit_ids"].apply(
|
|
lambda x: [i + f"-{index_name}" for i in x]
|
|
)
|
|
max_vals["entities"] = entities_df["human_readable_id"].max()
|
|
entities_dfs.append(entities_df)
|
|
|
|
# merge the dataframes
|
|
nodes_combined = pd.concat(nodes_dfs, axis=0, ignore_index=True, sort=False)
|
|
community_combined = pd.concat(
|
|
community_dfs, axis=0, ignore_index=True, sort=False
|
|
)
|
|
entities_combined = pd.concat(
|
|
entities_dfs, axis=0, ignore_index=True, sort=False
|
|
)
|
|
|
|
# load custom pipeline settings
|
|
this_directory = os.path.dirname(
|
|
os.path.abspath(inspect.getfile(inspect.currentframe()))
|
|
)
|
|
data = yaml.safe_load(open(f"{this_directory}/pipeline-settings.yaml"))
|
|
# layer the custom settings on top of the default configuration settings of graphrag
|
|
parameters = create_graphrag_config(data, ".")
|
|
|
|
# perform async search
|
|
result = await global_search(
|
|
config=parameters,
|
|
nodes=nodes_combined,
|
|
entities=entities_combined,
|
|
community_reports=community_combined,
|
|
community_level=COMMUNITY_LEVEL,
|
|
response_type="Multiple Paragraphs",
|
|
query=request.query,
|
|
)
|
|
|
|
# link index provenance to the context data
|
|
context_data = _update_context(result[1], links)
|
|
|
|
return GraphResponse(result=result[0], context_data=context_data)
|
|
except Exception as e:
|
|
logger = load_pipeline_logger()
|
|
logger.error(
|
|
message="Could not perform global search.",
|
|
cause=e,
|
|
stack=traceback.format_exc(),
|
|
)
|
|
raise HTTPException(status_code=500, detail=None)
|
|
|
|
|
|
@query_route.post(
|
|
"/local",
|
|
summary="Perform a local search across the knowledge graph index.",
|
|
description="The local query method generates answers by combining relevant data from the AI-extracted knowledge-graph with text chunks of the raw documents. This method is suitable for questions that require an understanding of specific entities mentioned in the documents (e.g. What are the healing properties of chamomile?).",
|
|
response_model=GraphResponse,
|
|
responses={200: {"model": GraphResponse}},
|
|
)
|
|
async def local_query(request: GraphRequest):
|
|
if isinstance(request.index_name, str):
|
|
index_names = [request.index_name]
|
|
else:
|
|
index_names = request.index_name
|
|
sanitized_index_names = [sanitize_name(name) for name in index_names]
|
|
sanitized_index_names_link = {
|
|
s: i for s, i in zip(sanitized_index_names, index_names)
|
|
}
|
|
|
|
for index_name in sanitized_index_names:
|
|
if not _is_index_complete(index_name):
|
|
raise HTTPException(
|
|
status_code=500,
|
|
detail=f"{index_name} not ready for querying.",
|
|
)
|
|
|
|
azure_client_manager = AzureClientManager()
|
|
blob_service_client = azure_client_manager.get_blob_service_client()
|
|
|
|
community_dfs = []
|
|
covariates_dfs = []
|
|
entities_dfs = []
|
|
nodes_dfs = []
|
|
relationships_dfs = []
|
|
text_units_dfs = []
|
|
|
|
links = {
|
|
"nodes": {},
|
|
"community": {},
|
|
"entities": {},
|
|
"text_units": {},
|
|
"relationships": {},
|
|
"covariates": {},
|
|
}
|
|
max_vals = {
|
|
"nodes": -1,
|
|
"community": -1,
|
|
"entities": -1,
|
|
"text_units": -1,
|
|
"relationships": -1,
|
|
"covariates": -1,
|
|
}
|
|
|
|
COMMUNITY_REPORT_TABLE = "output/create_final_community_reports.parquet"
|
|
COVARIATES_TABLE = "output/create_final_covariates.parquet"
|
|
ENTITIES_TABLE = "output/create_final_entities.parquet"
|
|
NODES_TABLE = "output/create_final_nodes.parquet"
|
|
RELATIONSHIPS_TABLE = "output/create_final_relationships.parquet"
|
|
TEXT_UNITS_TABLE = "output/create_final_text_units.parquet"
|
|
|
|
if isinstance(request.community_level, int):
|
|
COMMUNITY_LEVEL = request.community_level
|
|
else:
|
|
# Current investigations show that community level 2 is the most useful for local search. Set this as the default value
|
|
COMMUNITY_LEVEL = 2
|
|
|
|
for index_name in sanitized_index_names:
|
|
# check for existence of files the query relies on to validate the index is complete
|
|
validate_index_file_exist(index_name, COMMUNITY_REPORT_TABLE)
|
|
validate_index_file_exist(index_name, ENTITIES_TABLE)
|
|
validate_index_file_exist(index_name, NODES_TABLE)
|
|
validate_index_file_exist(index_name, RELATIONSHIPS_TABLE)
|
|
validate_index_file_exist(index_name, TEXT_UNITS_TABLE)
|
|
|
|
community_report_table_path = f"abfs://{index_name}/{COMMUNITY_REPORT_TABLE}"
|
|
covariates_table_path = f"abfs://{index_name}/{COVARIATES_TABLE}"
|
|
entities_table_path = f"abfs://{index_name}/{ENTITIES_TABLE}"
|
|
nodes_table_path = f"abfs://{index_name}/{NODES_TABLE}"
|
|
relationships_table_path = f"abfs://{index_name}/{RELATIONSHIPS_TABLE}"
|
|
text_units_table_path = f"abfs://{index_name}/{TEXT_UNITS_TABLE}"
|
|
|
|
# read the parquet files into DataFrames and add provenance information
|
|
|
|
# note that nodes need to set before communities to that max community id makes sense
|
|
nodes_df = get_df(nodes_table_path)
|
|
for i in nodes_df["human_readable_id"]:
|
|
links["nodes"][i + max_vals["nodes"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["nodes"] != -1:
|
|
nodes_df["human_readable_id"] += max_vals["nodes"] + 1
|
|
nodes_df["community"] = nodes_df["community"].apply(
|
|
lambda x: str(int(x) + max_vals["community"] + 1) if x else x
|
|
)
|
|
nodes_df["id"] = nodes_df["id"].apply(lambda x: x + f"-{index_name}")
|
|
nodes_df["title"] = nodes_df["title"].apply(lambda x: x + f"-{index_name}")
|
|
nodes_df["source_id"] = nodes_df["source_id"].apply(
|
|
lambda x: ",".join([i + f"-{index_name}" for i in x.split(",")])
|
|
)
|
|
max_vals["nodes"] = nodes_df["human_readable_id"].max()
|
|
nodes_dfs.append(nodes_df)
|
|
|
|
community_df = get_df(community_report_table_path)
|
|
for i in community_df["community"].astype(int):
|
|
links["community"][i + max_vals["community"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": str(i),
|
|
}
|
|
if max_vals["community"] != -1:
|
|
col = community_df["community"].astype(int) + max_vals["community"] + 1
|
|
community_df["community"] = col.astype(str)
|
|
max_vals["community"] = community_df["community"].astype(int).max()
|
|
community_dfs.append(community_df)
|
|
|
|
entities_df = get_df(entities_table_path)
|
|
for i in entities_df["human_readable_id"]:
|
|
links["entities"][i + max_vals["entities"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["entities"] != -1:
|
|
entities_df["human_readable_id"] += max_vals["entities"] + 1
|
|
entities_df["id"] = entities_df["id"].apply(lambda x: x + f"-{index_name}")
|
|
entities_df["name"] = entities_df["name"].apply(lambda x: x + f"-{index_name}")
|
|
entities_df["text_unit_ids"] = entities_df["text_unit_ids"].apply(
|
|
lambda x: [i + f"-{index_name}" for i in x]
|
|
)
|
|
max_vals["entities"] = entities_df["human_readable_id"].max()
|
|
entities_dfs.append(entities_df)
|
|
|
|
relationships_df = get_df(relationships_table_path)
|
|
for i in relationships_df["human_readable_id"].astype(int):
|
|
links["relationships"][i + max_vals["relationships"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["relationships"] != -1:
|
|
col = (
|
|
relationships_df["human_readable_id"].astype(int)
|
|
+ max_vals["relationships"]
|
|
+ 1
|
|
)
|
|
relationships_df["human_readable_id"] = col.astype(str)
|
|
relationships_df["source"] = relationships_df["source"].apply(
|
|
lambda x: x + f"-{index_name}"
|
|
)
|
|
relationships_df["target"] = relationships_df["target"].apply(
|
|
lambda x: x + f"-{index_name}"
|
|
)
|
|
relationships_df["text_unit_ids"] = relationships_df["text_unit_ids"].apply(
|
|
lambda x: [i + f"-{index_name}" for i in x]
|
|
)
|
|
max_vals["relationships"] = (
|
|
relationships_df["human_readable_id"].astype(int).max()
|
|
)
|
|
relationships_dfs.append(relationships_df)
|
|
|
|
text_units_df = get_df(text_units_table_path)
|
|
text_units_df["id"] = text_units_df["id"].apply(lambda x: f"{x}-{index_name}")
|
|
text_units_dfs.append(text_units_df)
|
|
|
|
index_container_client = blob_service_client.get_container_client(index_name)
|
|
if index_container_client.get_blob_client(COVARIATES_TABLE).exists():
|
|
covariates_df = get_df(covariates_table_path)
|
|
if i in covariates_df["human_readable_id"].astype(int):
|
|
links["covariates"][i + max_vals["covariates"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["covariates"] != -1:
|
|
col = (
|
|
covariates_df["human_readable_id"].astype(int)
|
|
+ max_vals["covariates"]
|
|
+ 1
|
|
)
|
|
covariates_df["human_readable_id"] = col.astype(str)
|
|
max_vals["covariates"] = (
|
|
covariates_df["human_readable_id"].astype(int).max()
|
|
)
|
|
covariates_dfs.append(covariates_df)
|
|
|
|
nodes_combined = pd.concat(nodes_dfs, axis=0, ignore_index=True)
|
|
community_combined = pd.concat(community_dfs, axis=0, ignore_index=True)
|
|
entities_combined = pd.concat(entities_dfs, axis=0, ignore_index=True)
|
|
text_units_combined = pd.concat(text_units_dfs, axis=0, ignore_index=True)
|
|
relationships_combined = pd.concat(relationships_dfs, axis=0, ignore_index=True)
|
|
covariates_combined = (
|
|
pd.concat(covariates_dfs, axis=0, ignore_index=True)
|
|
if covariates_dfs != []
|
|
else None
|
|
)
|
|
|
|
# load custom pipeline settings
|
|
this_directory = os.path.dirname(
|
|
os.path.abspath(inspect.getfile(inspect.currentframe()))
|
|
)
|
|
data = yaml.safe_load(open(f"{this_directory}/pipeline-settings.yaml"))
|
|
# layer the custom settings on top of the default configuration settings of graphrag
|
|
parameters = create_graphrag_config(data, ".")
|
|
|
|
# add index_names to vector_store args
|
|
parameters.embeddings.vector_store["index_names"] = sanitized_index_names
|
|
# internally write over the get_embedding_description_store
|
|
# method to use the multi-index collection.
|
|
import graphrag.api.query
|
|
|
|
graphrag.api.query._get_embedding_description_store = (
|
|
_get_embedding_description_store
|
|
)
|
|
# perform async search
|
|
result = await local_search(
|
|
config=parameters,
|
|
nodes=nodes_combined,
|
|
entities=entities_combined,
|
|
community_reports=community_combined,
|
|
text_units=text_units_combined,
|
|
relationships=relationships_combined,
|
|
covariates=covariates_combined,
|
|
community_level=COMMUNITY_LEVEL,
|
|
response_type="Multiple Paragraphs",
|
|
query=request.query,
|
|
)
|
|
|
|
# link index provenance to the context data
|
|
context_data = _update_context(result[1], links)
|
|
|
|
return GraphResponse(result=result[0], context_data=context_data)
|
|
|
|
|
|
def _is_index_complete(index_name: str) -> bool:
|
|
"""
|
|
Check if an index is ready for querying.
|
|
|
|
An index is ready for use only if it exists in the jobs table in cosmos db and
|
|
the indexing build job has finished (i.e. 100 percent). Otherwise it is not ready.
|
|
|
|
Args:
|
|
-----
|
|
index_name (str)
|
|
Name of the index to check.
|
|
|
|
Returns: bool
|
|
True if the index is ready for use, False otherwise.
|
|
"""
|
|
if PipelineJob.item_exist(index_name):
|
|
pipeline_job = PipelineJob.load_item(index_name)
|
|
if PipelineJobState(pipeline_job.status) == PipelineJobState.COMPLETE:
|
|
return True
|
|
return False
|
|
|
|
|
|
def _update_context(context, links):
|
|
"""
|
|
Update context data.
|
|
context_keys = ['reports', 'entities', 'relationships', 'claims', 'sources']
|
|
"""
|
|
updated_context = {}
|
|
for key in context:
|
|
updated_entry = []
|
|
if key == "reports":
|
|
updated_entry = [
|
|
dict(
|
|
{k: entry[k] for k in entry},
|
|
**{
|
|
"index_name": links["community"][int(entry["id"])][
|
|
"index_name"
|
|
],
|
|
"index_id": links["community"][int(entry["id"])]["id"],
|
|
},
|
|
)
|
|
for entry in context[key]
|
|
]
|
|
if key == "entities":
|
|
updated_entry = [
|
|
dict(
|
|
{k: entry[k] for k in entry},
|
|
**{
|
|
"entity": entry["entity"].split("-")[0],
|
|
"index_name": links["entities"][int(entry["id"])]["index_name"],
|
|
"index_id": links["entities"][int(entry["id"])]["id"],
|
|
},
|
|
)
|
|
for entry in context[key]
|
|
]
|
|
if key == "relationships":
|
|
updated_entry = [
|
|
dict(
|
|
{k: entry[k] for k in entry},
|
|
**{
|
|
"source": entry["source"].split("-")[0],
|
|
"target": entry["target"].split("-")[0],
|
|
"index_name": links["relationships"][int(entry["id"])][
|
|
"index_name"
|
|
],
|
|
"index_id": links["relationships"][int(entry["id"])]["id"],
|
|
},
|
|
)
|
|
for entry in context[key]
|
|
]
|
|
if key == "claims":
|
|
updated_entry = [
|
|
dict(
|
|
{k: entry[k] for k in entry},
|
|
**{
|
|
"index_name": links["claims"][int(entry["id"])]["index_name"],
|
|
"index_id": links["claims"][int(entry["id"])]["id"],
|
|
},
|
|
)
|
|
for entry in context[key]
|
|
]
|
|
if key == "sources":
|
|
updated_entry = context[key]
|
|
updated_context[key] = updated_entry
|
|
return updated_context
|
|
|
|
|
|
def _get_embedding_description_store(
|
|
entities: Any,
|
|
vector_store_type: str = Any,
|
|
config_args: dict | None = None,
|
|
):
|
|
collection_names = [
|
|
f"{index_name}_description_embedding"
|
|
for index_name in config_args.get("index_names", [])
|
|
]
|
|
ai_search_url = os.environ["AI_SEARCH_URL"]
|
|
description_embedding_store = MultiAzureAISearch(
|
|
collection_name="multi",
|
|
document_collection=None,
|
|
db_connection=None,
|
|
)
|
|
description_embedding_store.connect(url=ai_search_url)
|
|
for collection_name in collection_names:
|
|
description_embedding_store.add_collection(collection_name)
|
|
return description_embedding_store
|
|
|
|
|
|
class MultiAzureAISearch(BaseVectorStore):
|
|
"""The Azure AI Search vector storage implementation."""
|
|
|
|
def __init__(
|
|
self,
|
|
collection_name: str,
|
|
db_connection: Any,
|
|
document_collection: Any,
|
|
query_filter: Any | None = None,
|
|
**kwargs: Any,
|
|
):
|
|
self.collection_name = collection_name
|
|
self.db_connection = db_connection
|
|
self.document_collection = document_collection
|
|
self.query_filter = query_filter
|
|
self.kwargs = kwargs
|
|
self.collections = []
|
|
|
|
def add_collection(self, collection_name: str):
|
|
self.collections.append(collection_name)
|
|
|
|
def connect(self, **kwargs: Any) -> Any:
|
|
"""Connect to the AzureAI vector store."""
|
|
self.url = kwargs.get("url", None)
|
|
self.vector_size = kwargs.get("vector_size", 1536)
|
|
|
|
self.vector_search_profile_name = kwargs.get(
|
|
"vector_search_profile_name", "vectorSearchProfile"
|
|
)
|
|
|
|
if self.url:
|
|
pass
|
|
else:
|
|
not_supported_error = (
|
|
"Azure AI Search client is not supported on local host."
|
|
)
|
|
raise ValueError(not_supported_error)
|
|
|
|
def load_documents(
|
|
self, documents: list[VectorStoreDocument], overwrite: bool = True
|
|
) -> None:
|
|
raise NotImplementedError("load_documents() method not implemented")
|
|
|
|
def filter_by_id(self, include_ids: list[str] | list[int]) -> Any:
|
|
"""Build a query filter to filter documents by a list of ids."""
|
|
if include_ids is None or len(include_ids) == 0:
|
|
self.query_filter = None
|
|
# returning to keep consistency with other methods, but not needed
|
|
return self.query_filter
|
|
|
|
# more info about odata filtering here: https://learn.microsoft.com/en-us/azure/search/search-query-odata-search-in-function
|
|
# search.in is faster that joined and/or conditions
|
|
id_filter = ",".join([f"{id!s}" for id in include_ids])
|
|
self.query_filter = f"search.in(id, '{id_filter}', ',')"
|
|
|
|
# returning to keep consistency with other methods, but not needed
|
|
# TODO: Refactor on a future PR
|
|
return self.query_filter
|
|
|
|
def similarity_search_by_vector(
|
|
self, query_embedding: list[float], k: int = 10, **kwargs: Any
|
|
) -> list[VectorStoreSearchResult]:
|
|
"""Perform a vector-based similarity search."""
|
|
vectorized_query = VectorizedQuery(
|
|
vector=query_embedding, k_nearest_neighbors=k, fields="vector"
|
|
)
|
|
|
|
docs = []
|
|
for collection_name in self.collections:
|
|
add_on = "-" + str(collection_name.split("_")[0])
|
|
audience = os.environ["AI_SEARCH_AUDIENCE"]
|
|
db_connection = SearchClient(
|
|
self.url,
|
|
collection_name,
|
|
DefaultAzureCredential(),
|
|
audience=audience,
|
|
)
|
|
response = db_connection.search(
|
|
vector_queries=[vectorized_query],
|
|
)
|
|
mod_response = []
|
|
for r in response:
|
|
r["id"] = r.get("id", "") + add_on
|
|
mod_response += [r]
|
|
docs += mod_response
|
|
return [
|
|
VectorStoreSearchResult(
|
|
document=VectorStoreDocument(
|
|
id=doc.get("id", ""),
|
|
text=doc.get("text", ""),
|
|
vector=doc.get("vector", []),
|
|
attributes=(json.loads(doc.get("attributes", "{}"))),
|
|
),
|
|
score=abs(doc["@search.score"]),
|
|
)
|
|
for doc in docs
|
|
]
|
|
|
|
def similarity_search_by_text(
|
|
self, text: str, text_embedder: TextEmbedder, k: int = 10, **kwargs: Any
|
|
) -> list[VectorStoreSearchResult]:
|
|
"""Perform a text-based similarity search."""
|
|
query_embedding = text_embedder(text)
|
|
if query_embedding:
|
|
return self.similarity_search_by_vector(
|
|
query_embedding=query_embedding, k=k
|
|
)
|
|
return []
|