2025-01-30 13:59:51 -05:00

181 lines
6.8 KiB
Python

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import argparse
import asyncio
import traceback
from pathlib import Path
import graphrag.api as api
import yaml
from graphrag.callbacks.workflow_callbacks import WorkflowCallbacks
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.index.create_pipeline_config import create_pipeline_config
from graphrag.index.typing import PipelineRunResult
from graphrag_app.logger import (
PipelineJobUpdater,
load_pipeline_logger,
)
from graphrag_app.typing.pipeline import PipelineJobState
from graphrag_app.utils.azure_clients import AzureClientManager
from graphrag_app.utils.common import get_cosmos_container_store_client, sanitize_name
from graphrag_app.utils.pipeline import PipelineJob
def start_indexing_job(index_name: str):
print("Start indexing job...")
# get sanitized name
sanitized_index_name = sanitize_name(index_name)
# update or create new item in container-store in cosmosDB
azure_client_manager = AzureClientManager()
blob_service_client = azure_client_manager.get_blob_service_client()
if not blob_service_client.get_container_client(sanitized_index_name).exists():
blob_service_client.create_container(sanitized_index_name)
cosmos_container_client = get_cosmos_container_store_client()
cosmos_container_client.upsert_item({
"id": sanitized_index_name,
"human_readable_name": index_name,
"type": "index",
})
print("Initialize pipeline job...")
pipelinejob = PipelineJob()
pipeline_job = pipelinejob.load_item(sanitized_index_name)
sanitized_storage_name = pipeline_job.sanitized_storage_name
storage_name = pipeline_job.human_readable_index_name
# load custom pipeline settings
SCRIPT_DIR = Path(__file__).resolve().parent
with (SCRIPT_DIR / "settings.yaml").open("r") as f:
data = yaml.safe_load(f)
# dynamically set some values
data["input"]["container_name"] = sanitized_storage_name
data["storage"]["container_name"] = sanitized_index_name
data["reporting"]["container_name"] = sanitized_index_name
data["cache"]["container_name"] = sanitized_index_name
if "vector_store" in data["embeddings"]:
data["embeddings"]["vector_store"]["collection_name"] = (
f"{sanitized_index_name}_description_embedding"
)
# set prompt for entity extraction
if pipeline_job.entity_extraction_prompt:
fname = "entity-extraction-prompt.txt"
with open(fname, "w") as outfile:
outfile.write(pipeline_job.entity_extraction_prompt)
data["entity_extraction"]["prompt"] = fname
else:
data.pop("entity_extraction")
# set prompt for entity summarization
if pipeline_job.entity_summarization_prompt:
fname = "entity-summarization-prompt.txt"
with open(fname, "w") as outfile:
outfile.write(pipeline_job.entity_summarization_prompt)
data["summarize_descriptions"]["prompt"] = fname
else:
data.pop("summarize_descriptions")
# set prompt for community summarization
if pipeline_job.community_summarization_prompt:
fname = "community-summarization-prompt.txt"
with open(fname, "w") as outfile:
outfile.write(pipeline_job.community_summarization_prompt)
data["community_reports"]["prompt"] = fname
else:
data.pop("community_reports")
# generate default graphrag config parameters and override with custom settings
parameters = create_graphrag_config(data, ".")
# reset pipeline job details
pipeline_job.status = PipelineJobState.RUNNING
pipeline_config = create_pipeline_config(parameters)
pipeline_job.all_workflows = [
workflow.name for workflow in pipeline_config.workflows
]
pipeline_job.completed_workflows = []
pipeline_job.failed_workflows = []
# create new loggers/callbacks just for this job
print("Creating generic loggers...")
logger: WorkflowCallbacks = load_pipeline_logger(
logging_dir=sanitized_index_name,
index_name=index_name,
num_workflow_steps=len(pipeline_job.all_workflows),
)
# create pipeline job updater to monitor job progress
print("Creating pipeline job updater...")
pipeline_job_updater = PipelineJobUpdater(pipeline_job)
# run the pipeline
try:
print("Building index...")
pipeline_results: list[PipelineRunResult] = asyncio.run(
api.build_index(
config=parameters,
callbacks=[logger, pipeline_job_updater],
)
)
# once indexing job is done, check if any pipeline steps failed
for result in pipeline_results:
if result.errors:
pipeline_job.failed_workflows.append(result.workflow)
print("Indexing complete")
if len(pipeline_job.failed_workflows) > 0:
print("Indexing pipeline encountered errors.")
pipeline_job.status = PipelineJobState.FAILED
logger.error(
message=f"Indexing pipeline encountered error for index'{index_name}'.",
details={
"index": index_name,
"storage_name": storage_name,
"status_message": "indexing pipeline encountered error",
},
)
else:
print("Indexing pipeline complete.")
# record the pipeline completion
pipeline_job.status = PipelineJobState.COMPLETE
pipeline_job.percent_complete = 100
logger.log(
message=f"Indexing pipeline complete for index'{index_name}'.",
details={
"index": index_name,
"storage_name": storage_name,
"status_message": "indexing pipeline complete",
},
)
pipeline_job.progress = (
f"{len(pipeline_job.completed_workflows)} out of "
f"{len(pipeline_job.all_workflows)} workflows completed successfully."
)
if pipeline_job.status == PipelineJobState.FAILED:
exit(1) # signal to AKS that indexing job failed
except Exception as e:
pipeline_job.status = PipelineJobState.FAILED
error_details = {
"index": index_name,
"storage_name": storage_name,
}
logger.error(
message=f"Indexing pipeline failed for index '{index_name}'.",
cause=e,
stack=traceback.format_exc(),
details=error_details,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Build a graphrag index.")
parser.add_argument("-i", "--index-name", required=True)
args = parser.parse_args()
start_indexing_job(index_name=args.index_name)