mirror of
https://github.com/Azure-Samples/graphrag-accelerator.git
synced 2025-06-27 04:39:57 +00:00
459 lines
19 KiB
Python
459 lines
19 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# Licensed under the MIT License.
|
|
|
|
import inspect
|
|
import json
|
|
import os
|
|
import traceback
|
|
|
|
import pandas as pd
|
|
import yaml
|
|
from fastapi import (
|
|
APIRouter,
|
|
Depends,
|
|
HTTPException,
|
|
status,
|
|
)
|
|
from fastapi.responses import StreamingResponse
|
|
from graphrag.api.query import (
|
|
global_search_streaming as global_search_streaming_internal,
|
|
)
|
|
from graphrag.api.query import (
|
|
local_search_streaming as local_search_streaming_internal,
|
|
)
|
|
from graphrag.config import create_graphrag_config
|
|
|
|
from graphrag_app.api.query import _is_index_complete
|
|
from graphrag_app.logger.load_logger import load_pipeline_logger
|
|
from graphrag_app.typing.models import GraphRequest
|
|
from graphrag_app.utils.azure_clients import AzureClientManager
|
|
from graphrag_app.utils.common import (
|
|
get_df,
|
|
sanitize_name,
|
|
subscription_key_check,
|
|
validate_index_file_exist,
|
|
)
|
|
|
|
from .query import _get_embedding_description_store, _update_context
|
|
|
|
query_streaming_route = APIRouter(
|
|
prefix="/query/streaming",
|
|
tags=["Query Streaming Operations"],
|
|
)
|
|
if os.getenv("KUBERNETES_SERVICE_HOST"):
|
|
query_streaming_route.dependencies.append(Depends(subscription_key_check))
|
|
|
|
|
|
@query_streaming_route.post(
|
|
"/global",
|
|
summary="Stream a response back after performing a global search",
|
|
description="The global query method generates answers by searching over all AI-generated community reports in a map-reduce fashion. This is a resource-intensive method, but often gives good responses for questions that require an understanding of the dataset as a whole.",
|
|
status_code=status.HTTP_200_OK,
|
|
)
|
|
async def global_search_streaming(request: GraphRequest):
|
|
# this is a slightly modified version of graphrag_app.api.query.global_query() method
|
|
if isinstance(request.index_name, str):
|
|
index_names = [request.index_name]
|
|
else:
|
|
index_names = request.index_name
|
|
sanitized_index_names = [sanitize_name(name) for name in index_names]
|
|
sanitized_index_names_link = {
|
|
s: i for s, i in zip(sanitized_index_names, index_names)
|
|
}
|
|
|
|
for index_name in sanitized_index_names:
|
|
if not _is_index_complete(index_name):
|
|
raise HTTPException(
|
|
status_code=500,
|
|
detail=f"{sanitized_index_names_link[index_name]} not ready for querying.",
|
|
)
|
|
|
|
COMMUNITY_REPORT_TABLE = "output/create_final_community_reports.parquet"
|
|
ENTITIES_TABLE = "output/create_final_entities.parquet"
|
|
NODES_TABLE = "output/create_final_nodes.parquet"
|
|
|
|
if isinstance(request.community_level, int):
|
|
COMMUNITY_LEVEL = request.community_level
|
|
else:
|
|
# Current investigations show that community level 1 is the most useful for global search. Set this as the default value
|
|
COMMUNITY_LEVEL = 1
|
|
|
|
for index_name in sanitized_index_names:
|
|
validate_index_file_exist(index_name, COMMUNITY_REPORT_TABLE)
|
|
validate_index_file_exist(index_name, ENTITIES_TABLE)
|
|
validate_index_file_exist(index_name, NODES_TABLE)
|
|
try:
|
|
links = {
|
|
"nodes": {},
|
|
"community": {},
|
|
"entities": {},
|
|
"text_units": {},
|
|
"relationships": {},
|
|
"covariates": {},
|
|
}
|
|
max_vals = {
|
|
"nodes": -1,
|
|
"community": -1,
|
|
"entities": -1,
|
|
"text_units": -1,
|
|
"relationships": -1,
|
|
"covariates": -1,
|
|
}
|
|
|
|
community_dfs = []
|
|
entities_dfs = []
|
|
nodes_dfs = []
|
|
|
|
for index_name in sanitized_index_names:
|
|
community_report_table_path = (
|
|
f"abfs://{index_name}/{COMMUNITY_REPORT_TABLE}"
|
|
)
|
|
entities_table_path = f"abfs://{index_name}/{ENTITIES_TABLE}"
|
|
nodes_table_path = f"abfs://{index_name}/{NODES_TABLE}"
|
|
|
|
# read parquet files into DataFrames and add provenance information
|
|
# note that nodes need to set before communities to that max community id makes sense
|
|
nodes_df = get_df(nodes_table_path)
|
|
for i in nodes_df["human_readable_id"]:
|
|
links["nodes"][i + max_vals["nodes"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["nodes"] != -1:
|
|
nodes_df["human_readable_id"] += max_vals["nodes"] + 1
|
|
nodes_df["community"] = nodes_df["community"].apply(
|
|
lambda x: str(int(x) + max_vals["community"] + 1) if x else x
|
|
)
|
|
nodes_df["title"] = nodes_df["title"].apply(lambda x: x + f"-{index_name}")
|
|
nodes_df["source_id"] = nodes_df["source_id"].apply(
|
|
lambda x: ",".join([i + f"-{index_name}" for i in x.split(",")])
|
|
)
|
|
max_vals["nodes"] = nodes_df["human_readable_id"].max()
|
|
nodes_dfs.append(nodes_df)
|
|
|
|
community_df = get_df(community_report_table_path)
|
|
for i in community_df["community"].astype(int):
|
|
links["community"][i + max_vals["community"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": str(i),
|
|
}
|
|
if max_vals["community"] != -1:
|
|
col = community_df["community"].astype(int) + max_vals["community"] + 1
|
|
community_df["community"] = col.astype(str)
|
|
max_vals["community"] = community_df["community"].astype(int).max()
|
|
community_dfs.append(community_df)
|
|
|
|
entities_df = get_df(entities_table_path)
|
|
for i in entities_df["human_readable_id"]:
|
|
links["entities"][i + max_vals["entities"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["entities"] != -1:
|
|
entities_df["human_readable_id"] += max_vals["entities"] + 1
|
|
entities_df["name"] = entities_df["name"].apply(
|
|
lambda x: x + f"-{index_name}"
|
|
)
|
|
entities_df["text_unit_ids"] = entities_df["text_unit_ids"].apply(
|
|
lambda x: [i + f"-{index_name}" for i in x]
|
|
)
|
|
max_vals["entities"] = entities_df["human_readable_id"].max()
|
|
entities_dfs.append(entities_df)
|
|
|
|
# merge the dataframes
|
|
nodes_combined = pd.concat(nodes_dfs, axis=0, ignore_index=True, sort=False)
|
|
community_combined = pd.concat(
|
|
community_dfs, axis=0, ignore_index=True, sort=False
|
|
)
|
|
entities_combined = pd.concat(
|
|
entities_dfs, axis=0, ignore_index=True, sort=False
|
|
)
|
|
|
|
# load custom pipeline settings
|
|
this_directory = os.path.dirname(
|
|
os.path.abspath(inspect.getfile(inspect.currentframe()))
|
|
)
|
|
data = yaml.safe_load(open(f"{this_directory}/pipeline-settings.yaml"))
|
|
# layer the custom settings on top of the default configuration settings of graphrag
|
|
parameters = create_graphrag_config(data, ".")
|
|
|
|
return StreamingResponse(
|
|
_wrapper(
|
|
global_search_streaming_internal(
|
|
config=parameters,
|
|
nodes=nodes_combined,
|
|
entities=entities_combined,
|
|
community_reports=community_combined,
|
|
community_level=COMMUNITY_LEVEL,
|
|
response_type="Multiple Paragraphs",
|
|
query=request.query,
|
|
),
|
|
links,
|
|
),
|
|
media_type="application/json",
|
|
)
|
|
except Exception as e:
|
|
logger = load_pipeline_logger()
|
|
logger.error(
|
|
message="Error encountered while streaming global search response",
|
|
cause=e,
|
|
stack=traceback.format_exc(),
|
|
)
|
|
raise HTTPException(status_code=500, detail=None)
|
|
|
|
|
|
@query_streaming_route.post(
|
|
"/local",
|
|
summary="Stream a response back after performing a local search",
|
|
description="The local query method generates answers by combining relevant data from the AI-extracted knowledge-graph with text chunks of the raw documents. This method is suitable for questions that require an understanding of specific entities mentioned in the documents (e.g. What are the healing properties of chamomile?).",
|
|
status_code=status.HTTP_200_OK,
|
|
)
|
|
async def local_search_streaming(request: GraphRequest):
|
|
# this is a slightly modified version of graphrag_app.api.query.local_query() method
|
|
if isinstance(request.index_name, str):
|
|
index_names = [request.index_name]
|
|
else:
|
|
index_names = request.index_name
|
|
sanitized_index_names = [sanitize_name(name) for name in index_names]
|
|
sanitized_index_names_link = {
|
|
s: i for s, i in zip(sanitized_index_names, index_names)
|
|
}
|
|
for index_name in sanitized_index_names:
|
|
if not _is_index_complete(index_name):
|
|
raise HTTPException(
|
|
status_code=500,
|
|
detail=f"{sanitized_index_names_link[index_name]} not ready for querying.",
|
|
)
|
|
azure_client_manager = AzureClientManager()
|
|
blob_service_client = azure_client_manager.get_blob_service_client()
|
|
|
|
community_dfs = []
|
|
covariates_dfs = []
|
|
entities_dfs = []
|
|
nodes_dfs = []
|
|
relationships_dfs = []
|
|
text_units_dfs = []
|
|
links = {
|
|
"nodes": {},
|
|
"community": {},
|
|
"entities": {},
|
|
"text_units": {},
|
|
"relationships": {},
|
|
"covariates": {},
|
|
}
|
|
max_vals = {
|
|
"nodes": -1,
|
|
"community": -1,
|
|
"entities": -1,
|
|
"text_units": -1,
|
|
"relationships": -1,
|
|
"covariates": -1,
|
|
}
|
|
|
|
COMMUNITY_REPORT_TABLE = "output/create_final_community_reports.parquet"
|
|
COVARIATES_TABLE = "output/create_final_covariates.parquet"
|
|
ENTITIES_TABLE = "output/create_final_entities.parquet"
|
|
NODES_TABLE = "output/create_final_nodes.parquet"
|
|
RELATIONSHIPS_TABLE = "output/create_final_relationships.parquet"
|
|
TEXT_UNITS_TABLE = "output/create_final_text_units.parquet"
|
|
|
|
if isinstance(request.community_level, int):
|
|
COMMUNITY_LEVEL = request.community_level
|
|
else:
|
|
# Current investigations show that community level 2 is the most useful for local search. Set this as the default value
|
|
COMMUNITY_LEVEL = 2
|
|
|
|
try:
|
|
for index_name in sanitized_index_names:
|
|
# check for existence of files the query relies on to validate the index is complete
|
|
validate_index_file_exist(index_name, COMMUNITY_REPORT_TABLE)
|
|
validate_index_file_exist(index_name, ENTITIES_TABLE)
|
|
validate_index_file_exist(index_name, NODES_TABLE)
|
|
validate_index_file_exist(index_name, RELATIONSHIPS_TABLE)
|
|
validate_index_file_exist(index_name, TEXT_UNITS_TABLE)
|
|
|
|
community_report_table_path = (
|
|
f"abfs://{index_name}/{COMMUNITY_REPORT_TABLE}"
|
|
)
|
|
covariates_table_path = f"abfs://{index_name}/{COVARIATES_TABLE}"
|
|
entities_table_path = f"abfs://{index_name}/{ENTITIES_TABLE}"
|
|
nodes_table_path = f"abfs://{index_name}/{NODES_TABLE}"
|
|
relationships_table_path = f"abfs://{index_name}/{RELATIONSHIPS_TABLE}"
|
|
text_units_table_path = f"abfs://{index_name}/{TEXT_UNITS_TABLE}"
|
|
|
|
# read the parquet files into DataFrames and add provenance information
|
|
|
|
# note that nodes need to set before communities to that max community id makes sense
|
|
nodes_df = get_df(nodes_table_path)
|
|
for i in nodes_df["human_readable_id"]:
|
|
links["nodes"][i + max_vals["nodes"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["nodes"] != -1:
|
|
nodes_df["human_readable_id"] += max_vals["nodes"] + 1
|
|
nodes_df["community"] = nodes_df["community"].apply(
|
|
lambda x: str(int(x) + max_vals["community"] + 1) if x else x
|
|
)
|
|
nodes_df["id"] = nodes_df["id"].apply(lambda x: x + f"-{index_name}")
|
|
nodes_df["title"] = nodes_df["title"].apply(lambda x: x + f"-{index_name}")
|
|
nodes_df["source_id"] = nodes_df["source_id"].apply(
|
|
lambda x: ",".join([i + f"-{index_name}" for i in x.split(",")])
|
|
)
|
|
max_vals["nodes"] = nodes_df["human_readable_id"].max()
|
|
nodes_dfs.append(nodes_df)
|
|
|
|
community_df = get_df(community_report_table_path)
|
|
for i in community_df["community"].astype(int):
|
|
links["community"][i + max_vals["community"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": str(i),
|
|
}
|
|
if max_vals["community"] != -1:
|
|
col = community_df["community"].astype(int) + max_vals["community"] + 1
|
|
community_df["community"] = col.astype(str)
|
|
max_vals["community"] = community_df["community"].astype(int).max()
|
|
community_dfs.append(community_df)
|
|
|
|
entities_df = get_df(entities_table_path)
|
|
for i in entities_df["human_readable_id"]:
|
|
links["entities"][i + max_vals["entities"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["entities"] != -1:
|
|
entities_df["human_readable_id"] += max_vals["entities"] + 1
|
|
entities_df["id"] = entities_df["id"].apply(lambda x: x + f"-{index_name}")
|
|
entities_df["name"] = entities_df["name"].apply(
|
|
lambda x: x + f"-{index_name}"
|
|
)
|
|
entities_df["text_unit_ids"] = entities_df["text_unit_ids"].apply(
|
|
lambda x: [i + f"-{index_name}" for i in x]
|
|
)
|
|
max_vals["entities"] = entities_df["human_readable_id"].max()
|
|
entities_dfs.append(entities_df)
|
|
|
|
relationships_df = get_df(relationships_table_path)
|
|
for i in relationships_df["human_readable_id"].astype(int):
|
|
links["relationships"][i + max_vals["relationships"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["relationships"] != -1:
|
|
col = (
|
|
relationships_df["human_readable_id"].astype(int)
|
|
+ max_vals["relationships"]
|
|
+ 1
|
|
)
|
|
relationships_df["human_readable_id"] = col.astype(str)
|
|
relationships_df["source"] = relationships_df["source"].apply(
|
|
lambda x: x + f"-{index_name}"
|
|
)
|
|
relationships_df["target"] = relationships_df["target"].apply(
|
|
lambda x: x + f"-{index_name}"
|
|
)
|
|
relationships_df["text_unit_ids"] = relationships_df["text_unit_ids"].apply(
|
|
lambda x: [i + f"-{index_name}" for i in x]
|
|
)
|
|
max_vals["relationships"] = (
|
|
relationships_df["human_readable_id"].astype(int).max()
|
|
)
|
|
relationships_dfs.append(relationships_df)
|
|
|
|
text_units_df = get_df(text_units_table_path)
|
|
text_units_df["id"] = text_units_df["id"].apply(
|
|
lambda x: f"{x}-{index_name}"
|
|
)
|
|
text_units_dfs.append(text_units_df)
|
|
|
|
index_container_client = blob_service_client.get_container_client(
|
|
index_name
|
|
)
|
|
if index_container_client.get_blob_client(COVARIATES_TABLE).exists():
|
|
covariates_df = get_df(covariates_table_path)
|
|
if i in covariates_df["human_readable_id"].astype(int):
|
|
links["covariates"][i + max_vals["covariates"] + 1] = {
|
|
"index_name": sanitized_index_names_link[index_name],
|
|
"id": i,
|
|
}
|
|
if max_vals["covariates"] != -1:
|
|
col = (
|
|
covariates_df["human_readable_id"].astype(int)
|
|
+ max_vals["covariates"]
|
|
+ 1
|
|
)
|
|
covariates_df["human_readable_id"] = col.astype(str)
|
|
max_vals["covariates"] = (
|
|
covariates_df["human_readable_id"].astype(int).max()
|
|
)
|
|
covariates_dfs.append(covariates_df)
|
|
|
|
nodes_combined = pd.concat(nodes_dfs, axis=0, ignore_index=True)
|
|
community_combined = pd.concat(community_dfs, axis=0, ignore_index=True)
|
|
entities_combined = pd.concat(entities_dfs, axis=0, ignore_index=True)
|
|
text_units_combined = pd.concat(text_units_dfs, axis=0, ignore_index=True)
|
|
relationships_combined = pd.concat(relationships_dfs, axis=0, ignore_index=True)
|
|
covariates_combined = (
|
|
pd.concat(covariates_dfs, axis=0, ignore_index=True)
|
|
if covariates_dfs != []
|
|
else None
|
|
)
|
|
|
|
# load custom pipeline settings
|
|
this_directory = os.path.dirname(
|
|
os.path.abspath(inspect.getfile(inspect.currentframe()))
|
|
)
|
|
data = yaml.safe_load(open(f"{this_directory}/pipeline-settings.yaml"))
|
|
# layer the custom settings on top of the default configuration settings of graphrag
|
|
parameters = create_graphrag_config(data, ".")
|
|
|
|
# add index_names to vector_store args
|
|
parameters.embeddings.vector_store["index_names"] = sanitized_index_names
|
|
# internally write over the get_embedding_description_store
|
|
# method to use the multi-index collection.
|
|
import graphrag.api.query
|
|
|
|
graphrag.api.query._get_embedding_description_store = (
|
|
_get_embedding_description_store
|
|
)
|
|
|
|
# perform streaming local search
|
|
return StreamingResponse(
|
|
_wrapper(
|
|
local_search_streaming_internal(
|
|
config=parameters,
|
|
nodes=nodes_combined,
|
|
entities=entities_combined,
|
|
community_reports=community_combined,
|
|
text_units=text_units_combined,
|
|
relationships=relationships_combined,
|
|
covariates=covariates_combined,
|
|
community_level=COMMUNITY_LEVEL,
|
|
response_type="Multiple Paragraphs",
|
|
query=request.query,
|
|
),
|
|
links,
|
|
),
|
|
media_type="application/json",
|
|
)
|
|
except Exception as e:
|
|
logger = load_pipeline_logger()
|
|
logger.error(
|
|
message="Error encountered while streaming local search response",
|
|
cause=e,
|
|
stack=traceback.format_exc(),
|
|
)
|
|
raise HTTPException(status_code=500, detail=None)
|
|
|
|
|
|
async def _wrapper(x, links):
|
|
context = None
|
|
async for i in x:
|
|
if context:
|
|
yield json.dumps({"token": i, "context": None}).encode("utf-8") + b"\n"
|
|
else:
|
|
context = i
|
|
context = _update_context(context, links)
|
|
context = json.dumps({"token": "<EOM>", "context": context}).encode("utf-8") + b"\n"
|
|
yield context
|