harjitdotsingh 6364389a0f
ManagedAPP
2025-02-11 16:01:32 -04:00

81 lines
2.3 KiB
Bicep

@description('Name of the Azure OpenAI instance')
param openAiName string = 'openai${uniqueString(resourceGroup().id)}'
@description('Location for the Azure OpenAI instance')
param location string = resourceGroup().location
@description('LLM model name')
param llmModelName string = 'gpt-4o'
@description('LLM Model API version')
param llmModelVersion string
@description('Embedding model name')
param embeddingModelName string = 'text-embedding-ada-002'
@description('Embedding Model API version')
param embeddingModelVersion string
@description('TPM quota for llm model deployment (x1000)')
param llmTpmQuota int = 1
@description('TPM quota for embedding model deployment (x1000)')
param embeddingTpmQuota int = 1
resource aoai 'Microsoft.CognitiveServices/accounts@2024-10-01' = {
name: openAiName
location: location
sku: {
name: 'S0'
}
kind: 'OpenAI'
properties: {
publicNetworkAccess: 'Enabled'
disableLocalAuth: true
}
}
resource llmDeployment 'Microsoft.CognitiveServices/accounts/deployments@2024-10-01' = {
parent: aoai
name: llmModelName
sku: {
name: 'GlobalStandard'
capacity: llmTpmQuota
}
properties: {
model: {
format: 'OpenAI'
name: llmModelName
version: llmModelVersion
}
currentCapacity: llmTpmQuota
}
}
resource embeddingDeployment 'Microsoft.CognitiveServices/accounts/deployments@2024-10-01' = {
parent: aoai
name: embeddingModelName
// NOTE: simultaneous model deployments are not supported at this time. As a workaround, use dependsOn to force the models to be deployed in a sequential manner.
dependsOn: [llmDeployment]
sku: {
name: 'Standard'
capacity: embeddingTpmQuota
}
properties: {
model: {
format: 'OpenAI'
name: embeddingModelName
version: embeddingModelVersion
}
currentCapacity: embeddingTpmQuota
}
}
output openAiEndpoint string = aoai.properties.endpoint
output llmModel string = llmDeployment.properties.model.name
output llmModelDeploymentName string = llmDeployment.name
output llmModelApiVersion string = llmDeployment.apiVersion
output textEmbeddingModel string = embeddingDeployment.properties.model.name
output textEmbeddingModelDeploymentName string = embeddingDeployment.name
output textEmbeddingModelApiVersion string = embeddingDeployment.apiVersion