Gabriel Nieves f6463bb2b3 fixed typo
2025-04-11 09:55:06 +00:00

320 lines
12 KiB
Python

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import os
import traceback
from time import time
from azure.identity import DefaultAzureCredential
from azure.search.documents.indexes import SearchIndexClient
from fastapi import (
APIRouter,
Depends,
HTTPException,
UploadFile,
status,
)
from graphrag.config.enums import IndexingMethod
from kubernetes import (
client as kubernetes_client,
)
from kubernetes import (
config as kubernetes_config,
)
from graphrag_app.logger.load_logger import load_pipeline_logger
from graphrag_app.typing.models import (
BaseResponse,
IndexNameList,
IndexStatusResponse,
)
from graphrag_app.typing.pipeline import PipelineJobState
from graphrag_app.utils.azure_clients import AzureClientManager
from graphrag_app.utils.common import (
delete_cosmos_container_item_if_exist,
delete_storage_container_if_exist,
get_cosmos_container_store_client,
sanitize_name,
subscription_key_check,
)
from graphrag_app.utils.pipeline import PipelineJob
index_route = APIRouter(
prefix="/index",
tags=["Index Operations"],
)
if os.getenv("KUBERNETES_SERVICE_HOST"):
index_route.dependencies.append(Depends(subscription_key_check))
@index_route.post(
"",
summary="Build an index",
response_model=BaseResponse,
responses={status.HTTP_202_ACCEPTED: {"model": BaseResponse}},
)
async def schedule_index_job(
storage_container_name: str,
index_container_name: str,
entity_extraction_prompt: UploadFile | None = None,
entity_summarization_prompt: UploadFile | None = None,
community_summarization_graph_prompt: UploadFile | None = None,
community_summarization_text_prompt: UploadFile | None = None,
indexing_method: IndexingMethod = IndexingMethod.Standard.value,
):
indexing_method = IndexingMethod(indexing_method).value
azure_client_manager = AzureClientManager()
blob_service_client = azure_client_manager.get_blob_service_client()
pipelinejob = PipelineJob()
# validate index name against blob container naming rules
sanitized_index_container_name = sanitize_name(index_container_name)
# check for data container existence
sanitized_storage_container_name = sanitize_name(storage_container_name)
if not blob_service_client.get_container_client(
sanitized_storage_container_name
).exists():
raise HTTPException(
status_code=status.HTTP_412_PRECONDITION_FAILED,
detail=f"Storage container '{storage_container_name}' does not exist",
)
# check for prompts
entity_extraction_prompt_content = (
entity_extraction_prompt.file.read().decode("utf-8")
if entity_extraction_prompt
else None
)
entity_summarization_prompt_content = (
entity_summarization_prompt.file.read().decode("utf-8")
if entity_summarization_prompt
else None
)
community_summarization_graph_content = (
community_summarization_graph_prompt.file.read().decode("utf-8")
if community_summarization_graph_prompt
else None
)
community_summarization_text_content = (
community_summarization_text_prompt.file.read().decode("utf-8")
if community_summarization_text_prompt
else None
)
# check for existing index job
# it is okay if job doesn't exist, but if it does,
# it must not be scheduled or running
if pipelinejob.item_exist(sanitized_index_container_name):
existing_job = pipelinejob.load_item(sanitized_index_container_name)
if (PipelineJobState(existing_job.status) == PipelineJobState.SCHEDULED) or (
PipelineJobState(existing_job.status) == PipelineJobState.RUNNING
):
raise HTTPException(
status_code=status.HTTP_425_TOO_EARLY, # request has been accepted for processing but is not complete.
detail=f"Index '{index_container_name}' already exists and has not finished building.",
)
# if indexing job is in a failed state, delete the associated K8s job and pod to allow for a new job to be scheduled
if PipelineJobState(existing_job.status) == PipelineJobState.FAILED:
_delete_k8s_job(
f"indexing-job-{sanitized_index_container_name}",
os.environ["AKS_NAMESPACE"],
)
# reset the pipeline job details
existing_job._status = PipelineJobState.SCHEDULED
existing_job._percent_complete = 0
existing_job._progress = ""
existing_job._all_workflows = existing_job._completed_workflows = (
existing_job._failed_workflows
) = []
existing_job._entity_extraction_prompt = entity_extraction_prompt_content
existing_job._entity_summarization_prompt = entity_summarization_prompt_content
existing_job.community_summarization_graph_prompt = (
community_summarization_graph_content
)
existing_job.community_summarization_text_prompt = (
community_summarization_text_content
)
existing_job._indexing_method = indexing_method
existing_job._epoch_request_time = int(time())
existing_job.update_db()
else:
pipelinejob.create_item(
id=sanitized_index_container_name,
human_readable_index_name=index_container_name,
human_readable_storage_name=storage_container_name,
entity_extraction_prompt=entity_extraction_prompt_content,
entity_summarization_prompt=entity_summarization_prompt_content,
community_summarization_graph_prompt=community_summarization_graph_content,
community_summarization_text_prompt=community_summarization_text_content,
indexing_method=indexing_method,
status=PipelineJobState.SCHEDULED,
)
return BaseResponse(status="Indexing job scheduled")
@index_route.get(
"",
summary="Get all index names",
response_model=IndexNameList,
responses={status.HTTP_200_OK: {"model": IndexNameList}},
)
async def get_all_index_names(
container_store_client=Depends(get_cosmos_container_store_client),
):
"""
Retrieve a list of all index names.
"""
items = []
try:
for item in container_store_client.read_all_items():
if item["type"] == "index":
items.append(item["human_readable_index_name"])
except Exception as e:
logger = load_pipeline_logger()
logger.error(
message="Error fetching index list",
cause=e,
stack=traceback.format_exc(),
)
return IndexNameList(index_name=items)
def _get_pod_name(job_name: str, namespace: str) -> str | None:
"""Retrieve the name of a kubernetes pod associated with a given job name."""
# function should work only when running in AKS
if not os.getenv("KUBERNETES_SERVICE_HOST"):
return None
kubernetes_config.load_incluster_config()
v1 = kubernetes_client.CoreV1Api()
ret = v1.list_namespaced_pod(namespace=namespace)
for i in ret.items:
if job_name in i.metadata.name:
return i.metadata.name
return None
def _delete_k8s_job(job_name: str, namespace: str) -> None:
"""Delete a kubernetes job.
Must delete K8s job first and then any pods associated with it
"""
# function should only work when running in AKS
if not os.getenv("KUBERNETES_SERVICE_HOST"):
return None
logger = load_pipeline_logger()
kubernetes_config.load_incluster_config()
try:
batch_v1 = kubernetes_client.BatchV1Api()
batch_v1.delete_namespaced_job(name=job_name, namespace=namespace)
except Exception as e:
logger.error(
message=f"Error deleting k8s job {job_name}.",
cause=e,
stack=traceback.format_exc(),
details={"container": job_name},
)
pass
try:
core_v1 = kubernetes_client.CoreV1Api()
job_pod = _get_pod_name(job_name, os.environ["AKS_NAMESPACE"])
if job_pod:
core_v1.delete_namespaced_pod(job_pod, namespace=namespace)
except Exception as e:
logger.error(
message=f"Error deleting k8s pod for job {job_name}.",
cause=e,
stack=traceback.format_exc(),
details={"container": job_name},
)
pass
@index_route.delete(
"/{container_name}",
summary="Delete a specified index",
response_model=BaseResponse,
responses={status.HTTP_200_OK: {"model": BaseResponse}},
)
async def delete_index(
container_name: str,
sanitized_container_name: str = Depends(sanitize_name),
):
"""
Delete a specified index and all associated metadata.
"""
try:
# kill indexing job if it is running
if os.getenv("KUBERNETES_SERVICE_HOST"): # only found if in AKS
_delete_k8s_job(f"indexing-job-{sanitized_container_name}", "graphrag")
delete_storage_container_if_exist(sanitized_container_name)
delete_cosmos_container_item_if_exist(
"container-store", sanitized_container_name
)
delete_cosmos_container_item_if_exist("jobs", sanitized_container_name)
# delete associated AI Search index
index_client = SearchIndexClient(
endpoint=os.environ["AI_SEARCH_URL"],
credential=DefaultAzureCredential(),
audience=os.environ["AI_SEARCH_AUDIENCE"],
)
index_names = index_client.list_index_names()
ai_search_index_report_name = f"{sanitized_container_name}-community-full_content"
if ai_search_index_report_name in index_names:
index_client.delete_index(ai_search_index_report_name)
ai_search_index_description_name = f"{sanitized_container_name}-entity-description"
if ai_search_index_description_name in index_names:
index_client.delete_index(ai_search_index_description_name)
ai_search_index_text_name = f"{sanitized_container_name}-text_unit-text"
if ai_search_index_text_name in index_names:
index_client.delete_index(ai_search_index_text_name)
except Exception as e:
logger = load_pipeline_logger()
logger.error(
message=f"Error encountered while deleting all data for {container_name}.",
cause=e,
stack=traceback.format_exc(),
details={"container": container_name},
)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error deleting '{container_name}'.",
)
return BaseResponse(status="Success")
@index_route.get(
"/status/{container_name}",
summary="Track the status of an indexing job",
response_model=IndexStatusResponse,
status_code=status.HTTP_200_OK,
)
async def get_index_status(
container_name: str, sanitized_container_name: str = Depends(sanitize_name)
):
pipelinejob = PipelineJob()
if pipelinejob.item_exist(sanitized_container_name):
pipeline_job = pipelinejob.load_item(sanitized_container_name)
return IndexStatusResponse(
status_code=status.HTTP_200_OK,
index_name=pipeline_job.human_readable_index_name,
storage_name=pipeline_job.human_readable_storage_name,
status=pipeline_job.status.value,
percent_complete=pipeline_job.percent_complete,
progress=pipeline_job.progress,
)
else:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"'{container_name}' does not exist.",
)