mirror of
https://github.com/microsoft/graphrag.git
synced 2025-07-04 15:41:17 +00:00
85 lines
2.7 KiB
Python
85 lines
2.7 KiB
Python
![]() |
# Copyright (c) 2024 Microsoft Corporation.
|
||
|
# Licensed under the MIT License
|
||
|
import asyncio
|
||
|
import os
|
||
|
|
||
|
import pandas as pd
|
||
|
|
||
|
from examples.custom_set_of_available_verbs.custom_verb_definitions import custom_verbs
|
||
|
from graphrag.index import run_pipeline, run_pipeline_with_config
|
||
|
from graphrag.index.config import PipelineWorkflowReference
|
||
|
|
||
|
# Our fake dataset
|
||
|
dataset = pd.DataFrame([{"col1": 2, "col2": 4}, {"col1": 5, "col2": 10}])
|
||
|
|
||
|
|
||
|
async def run_with_config():
|
||
|
"""Run a pipeline with a config file"""
|
||
|
# load pipeline.yml in this directory
|
||
|
config_path = os.path.join(
|
||
|
os.path.dirname(os.path.abspath(__file__)), "./pipeline.yml"
|
||
|
)
|
||
|
|
||
|
outputs = []
|
||
|
async for output in run_pipeline_with_config(
|
||
|
config_or_path=config_path, dataset=dataset
|
||
|
):
|
||
|
outputs.append(output)
|
||
|
pipeline_result = outputs[-1]
|
||
|
|
||
|
if pipeline_result.result is not None:
|
||
|
# Should look something like this, which should be identical to the python example:
|
||
|
# col1 col2 col_1_custom
|
||
|
# 0 2 4 2 - custom verb
|
||
|
# 1 5 10 5 - custom verb
|
||
|
print(pipeline_result.result)
|
||
|
else:
|
||
|
print("No results!")
|
||
|
|
||
|
|
||
|
async def run_python():
|
||
|
workflows: list[PipelineWorkflowReference] = [
|
||
|
PipelineWorkflowReference(
|
||
|
name="my_workflow",
|
||
|
steps=[
|
||
|
{
|
||
|
"verb": "str_append", # should be the key that you pass to the custom_verbs dict below
|
||
|
"args": {
|
||
|
"source_column": "col1", # from above
|
||
|
"target_column": "col_1_custom", # new column name,
|
||
|
"string_to_append": " - custom verb", # The string to append to the column
|
||
|
},
|
||
|
# Since we're trying to act on the default input, we don't need explicitly to specify an input
|
||
|
}
|
||
|
],
|
||
|
),
|
||
|
]
|
||
|
|
||
|
# Run the pipeline
|
||
|
outputs = []
|
||
|
async for output in run_pipeline(
|
||
|
dataset=dataset,
|
||
|
workflows=workflows,
|
||
|
additional_verbs=custom_verbs,
|
||
|
):
|
||
|
outputs.append(output)
|
||
|
|
||
|
# Find the result from the workflow we care about
|
||
|
pipeline_result = next(
|
||
|
(output for output in outputs if output.workflow == "my_workflow"), None
|
||
|
)
|
||
|
|
||
|
if pipeline_result is not None and pipeline_result.result is not None:
|
||
|
# Should look something like this:
|
||
|
# col1 col2 col_1_custom
|
||
|
# 0 2 4 2 - custom verb
|
||
|
# 1 5 10 5 - custom verb
|
||
|
print(pipeline_result.result)
|
||
|
else:
|
||
|
print("No results!")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
asyncio.run(run_python())
|
||
|
asyncio.run(run_with_config())
|