2024-07-01 15:25:30 -06:00
|
|
|
# Copyright (c) 2024 Microsoft Corporation.
|
|
|
|
# Licensed under the MIT License
|
|
|
|
import asyncio
|
|
|
|
import os
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
from graphrag.index import run_pipeline, run_pipeline_with_config
|
|
|
|
from graphrag.index.config import PipelineWorkflowReference
|
|
|
|
|
|
|
|
# our fake dataset
|
|
|
|
dataset = pd.DataFrame([{"col1": 2, "col2": 4}, {"col1": 5, "col2": 10}])
|
|
|
|
|
|
|
|
|
|
|
|
async def run_with_config():
|
|
|
|
"""Run a pipeline with a config file"""
|
|
|
|
# load pipeline.yml in this directory
|
|
|
|
config_path = os.path.join(
|
|
|
|
os.path.dirname(os.path.abspath(__file__)), "./pipeline.yml"
|
|
|
|
)
|
|
|
|
|
|
|
|
tables = []
|
|
|
|
async for table in run_pipeline_with_config(
|
|
|
|
config_or_path=config_path, dataset=dataset
|
|
|
|
):
|
|
|
|
tables.append(table)
|
|
|
|
pipeline_result = tables[-1]
|
|
|
|
|
|
|
|
if pipeline_result.result is not None:
|
|
|
|
# Should look something like this, which should be identical to the python example:
|
|
|
|
# col1 col2 col_multiplied
|
|
|
|
# 0 2 4 8
|
|
|
|
# 1 5 10 50
|
|
|
|
print(pipeline_result.result)
|
|
|
|
else:
|
|
|
|
print("No results!")
|
|
|
|
|
|
|
|
|
|
|
|
async def run_python():
|
|
|
|
"""Run a pipeline using the python API"""
|
|
|
|
workflows: list[PipelineWorkflowReference] = [
|
|
|
|
PipelineWorkflowReference(
|
|
|
|
steps=[
|
|
|
|
{
|
|
|
|
# built-in verb
|
2024-09-13 03:44:38 +09:00
|
|
|
"verb": "derive", # https://github.com/microsoft/datashaper/blob/main/python/datashaper/datashaper/verbs/derive.py
|
2024-07-01 15:25:30 -06:00
|
|
|
"args": {
|
|
|
|
"column1": "col1", # from above
|
|
|
|
"column2": "col2", # from above
|
|
|
|
"to": "col_multiplied", # new column name
|
|
|
|
"operator": "*", # multiply the two columns
|
|
|
|
},
|
|
|
|
# Since we're trying to act on the default input, we don't need explicitly to specify an input
|
|
|
|
}
|
|
|
|
]
|
|
|
|
),
|
|
|
|
]
|
|
|
|
|
|
|
|
# Grab the last result from the pipeline, should be our entity extraction
|
|
|
|
tables = []
|
|
|
|
async for table in run_pipeline(dataset=dataset, workflows=workflows):
|
|
|
|
tables.append(table)
|
|
|
|
pipeline_result = tables[-1]
|
|
|
|
|
|
|
|
if pipeline_result.result is not None:
|
|
|
|
# Should look something like this:
|
|
|
|
# col1 col2 col_multiplied
|
|
|
|
# 0 2 4 8
|
|
|
|
# 1 5 10 50
|
|
|
|
print(pipeline_result.result)
|
|
|
|
else:
|
|
|
|
print("No results!")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
asyncio.run(run_with_config())
|
|
|
|
asyncio.run(run_python())
|