graphrag/tests/verbs/util.py

94 lines
3.4 KiB
Python
Raw Normal View History

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import pandas as pd
from pandas.testing import assert_series_equal
Refactor config (#1593) * Refactor config - Add new ModelConfig to represent LLM settings - Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode - Add top level models config that is a list of available LLM ModelConfigs - Remove LLMConfig inheritance and delete LLMConfig - Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config - Remove all fallbacks and hydration logic from create_graphrag_config - This removes the automatic env variable overrides - Support env variables within config files using Templating - This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$" - Update init content to initialize new config file with the ModelConfig structure * Use dict of ModelConfig instead of list * Add model validations and unit tests * Fix ruff checks * Add semversioner change * Fix unit tests * validate root_dir in pydantic model * Rename ModelConfig to LanguageModelConfig * Rename ModelConfigMissingError to LanguageModelConfigMissingError * Add validationg for unexpected API keys * Allow skipping pydantic validation for testing/mocking purposes. * Add default lm configs to verb tests * smoke test * remove config from flows to fix llm arg mapping * Fix embedding llm arg mapping * Remove timestamp from smoke test outputs * Remove unused "subworkflows" smoke test properties * Add models to smoke test configs * Update smoke test output path * Send logs to logs folder * Fix output path * Fix csv test file pattern * Update placeholder * Format * Instantiate default model configs * Fix unit tests for config defaults * Fix migration notebook * Remove create_pipeline_config * Remove several unused config models * Remove indexing embedding and input configs * Move embeddings function to config * Remove skip_workflows * Remove skip embeddings in favor of explicit naming * fix unit test spelling mistake * self.models[model_id] is already a language model. Remove redundant casting. * update validation errors to instruct users to rerun graphrag init * instantiate LanguageModelConfigs with validation * skip validation in unit tests * update verb tests to use default model settings instead of skipping validation * test using llm settings * cleanup verb tests * remove unsafe default model config * remove the ability to skip pydantic validation * remove None union types when default values are set * move vector_store from embeddings to top level of config and delete resolve_paths * update vector store settings * fix vector store and smoke tests * fix serializing vector_store settings * fix vector_store usage * fix vector_store type * support cli overrides for loading graphrag config * rename storage to output * Add --force flag to init * Remove run_id and resume, fix Drift config assignment * Ruff --------- Co-authored-by: Nathan Evans <github@talkswithnumbers.com> Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-01-21 15:52:06 -08:00
import graphrag.config.defaults as defs
from graphrag.index.run.utils import create_run_context
from graphrag.index.typing.context import PipelineRunContext
from graphrag.utils.storage import load_table_from_storage, write_table_to_storage
pd.set_option("display.max_columns", None)
Refactor config (#1593) * Refactor config - Add new ModelConfig to represent LLM settings - Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode - Add top level models config that is a list of available LLM ModelConfigs - Remove LLMConfig inheritance and delete LLMConfig - Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config - Remove all fallbacks and hydration logic from create_graphrag_config - This removes the automatic env variable overrides - Support env variables within config files using Templating - This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$" - Update init content to initialize new config file with the ModelConfig structure * Use dict of ModelConfig instead of list * Add model validations and unit tests * Fix ruff checks * Add semversioner change * Fix unit tests * validate root_dir in pydantic model * Rename ModelConfig to LanguageModelConfig * Rename ModelConfigMissingError to LanguageModelConfigMissingError * Add validationg for unexpected API keys * Allow skipping pydantic validation for testing/mocking purposes. * Add default lm configs to verb tests * smoke test * remove config from flows to fix llm arg mapping * Fix embedding llm arg mapping * Remove timestamp from smoke test outputs * Remove unused "subworkflows" smoke test properties * Add models to smoke test configs * Update smoke test output path * Send logs to logs folder * Fix output path * Fix csv test file pattern * Update placeholder * Format * Instantiate default model configs * Fix unit tests for config defaults * Fix migration notebook * Remove create_pipeline_config * Remove several unused config models * Remove indexing embedding and input configs * Move embeddings function to config * Remove skip_workflows * Remove skip embeddings in favor of explicit naming * fix unit test spelling mistake * self.models[model_id] is already a language model. Remove redundant casting. * update validation errors to instruct users to rerun graphrag init * instantiate LanguageModelConfigs with validation * skip validation in unit tests * update verb tests to use default model settings instead of skipping validation * test using llm settings * cleanup verb tests * remove unsafe default model config * remove the ability to skip pydantic validation * remove None union types when default values are set * move vector_store from embeddings to top level of config and delete resolve_paths * update vector store settings * fix vector store and smoke tests * fix serializing vector_store settings * fix vector_store usage * fix vector_store type * support cli overrides for loading graphrag config * rename storage to output * Add --force flag to init * Remove run_id and resume, fix Drift config assignment * Ruff --------- Co-authored-by: Nathan Evans <github@talkswithnumbers.com> Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-01-21 15:52:06 -08:00
FAKE_API_KEY = "NOT_AN_API_KEY"
DEFAULT_CHAT_MODEL_CONFIG = {
"api_key": FAKE_API_KEY,
"type": defs.DEFAULT_CHAT_MODEL_TYPE.value,
"model": defs.DEFAULT_CHAT_MODEL,
Refactor config (#1593) * Refactor config - Add new ModelConfig to represent LLM settings - Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode - Add top level models config that is a list of available LLM ModelConfigs - Remove LLMConfig inheritance and delete LLMConfig - Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config - Remove all fallbacks and hydration logic from create_graphrag_config - This removes the automatic env variable overrides - Support env variables within config files using Templating - This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$" - Update init content to initialize new config file with the ModelConfig structure * Use dict of ModelConfig instead of list * Add model validations and unit tests * Fix ruff checks * Add semversioner change * Fix unit tests * validate root_dir in pydantic model * Rename ModelConfig to LanguageModelConfig * Rename ModelConfigMissingError to LanguageModelConfigMissingError * Add validationg for unexpected API keys * Allow skipping pydantic validation for testing/mocking purposes. * Add default lm configs to verb tests * smoke test * remove config from flows to fix llm arg mapping * Fix embedding llm arg mapping * Remove timestamp from smoke test outputs * Remove unused "subworkflows" smoke test properties * Add models to smoke test configs * Update smoke test output path * Send logs to logs folder * Fix output path * Fix csv test file pattern * Update placeholder * Format * Instantiate default model configs * Fix unit tests for config defaults * Fix migration notebook * Remove create_pipeline_config * Remove several unused config models * Remove indexing embedding and input configs * Move embeddings function to config * Remove skip_workflows * Remove skip embeddings in favor of explicit naming * fix unit test spelling mistake * self.models[model_id] is already a language model. Remove redundant casting. * update validation errors to instruct users to rerun graphrag init * instantiate LanguageModelConfigs with validation * skip validation in unit tests * update verb tests to use default model settings instead of skipping validation * test using llm settings * cleanup verb tests * remove unsafe default model config * remove the ability to skip pydantic validation * remove None union types when default values are set * move vector_store from embeddings to top level of config and delete resolve_paths * update vector store settings * fix vector store and smoke tests * fix serializing vector_store settings * fix vector_store usage * fix vector_store type * support cli overrides for loading graphrag config * rename storage to output * Add --force flag to init * Remove run_id and resume, fix Drift config assignment * Ruff --------- Co-authored-by: Nathan Evans <github@talkswithnumbers.com> Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-01-21 15:52:06 -08:00
}
DEFAULT_EMBEDDING_MODEL_CONFIG = {
"api_key": FAKE_API_KEY,
"type": defs.DEFAULT_EMBEDDING_MODEL_TYPE.value,
"model": defs.DEFAULT_EMBEDDING_MODEL,
Refactor config (#1593) * Refactor config - Add new ModelConfig to represent LLM settings - Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode - Add top level models config that is a list of available LLM ModelConfigs - Remove LLMConfig inheritance and delete LLMConfig - Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config - Remove all fallbacks and hydration logic from create_graphrag_config - This removes the automatic env variable overrides - Support env variables within config files using Templating - This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$" - Update init content to initialize new config file with the ModelConfig structure * Use dict of ModelConfig instead of list * Add model validations and unit tests * Fix ruff checks * Add semversioner change * Fix unit tests * validate root_dir in pydantic model * Rename ModelConfig to LanguageModelConfig * Rename ModelConfigMissingError to LanguageModelConfigMissingError * Add validationg for unexpected API keys * Allow skipping pydantic validation for testing/mocking purposes. * Add default lm configs to verb tests * smoke test * remove config from flows to fix llm arg mapping * Fix embedding llm arg mapping * Remove timestamp from smoke test outputs * Remove unused "subworkflows" smoke test properties * Add models to smoke test configs * Update smoke test output path * Send logs to logs folder * Fix output path * Fix csv test file pattern * Update placeholder * Format * Instantiate default model configs * Fix unit tests for config defaults * Fix migration notebook * Remove create_pipeline_config * Remove several unused config models * Remove indexing embedding and input configs * Move embeddings function to config * Remove skip_workflows * Remove skip embeddings in favor of explicit naming * fix unit test spelling mistake * self.models[model_id] is already a language model. Remove redundant casting. * update validation errors to instruct users to rerun graphrag init * instantiate LanguageModelConfigs with validation * skip validation in unit tests * update verb tests to use default model settings instead of skipping validation * test using llm settings * cleanup verb tests * remove unsafe default model config * remove the ability to skip pydantic validation * remove None union types when default values are set * move vector_store from embeddings to top level of config and delete resolve_paths * update vector store settings * fix vector store and smoke tests * fix serializing vector_store settings * fix vector_store usage * fix vector_store type * support cli overrides for loading graphrag config * rename storage to output * Add --force flag to init * Remove run_id and resume, fix Drift config assignment * Ruff --------- Co-authored-by: Nathan Evans <github@talkswithnumbers.com> Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-01-21 15:52:06 -08:00
}
DEFAULT_MODEL_CONFIG = {
defs.DEFAULT_CHAT_MODEL_ID: DEFAULT_CHAT_MODEL_CONFIG,
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
async def create_test_context(storage: list[str] | None = None) -> PipelineRunContext:
"""Create a test context with tables loaded into storage storage."""
context = create_run_context()
# always set the input docs, but since our stored table is final, drop what wouldn't be in the original source input
input = load_test_table("documents")
input.drop(columns=["text_unit_ids"], inplace=True)
await write_table_to_storage(input, "documents", context.output_storage)
if storage:
for name in storage:
table = load_test_table(name)
await write_table_to_storage(table, name, context.output_storage)
return context
def load_test_table(output: str) -> pd.DataFrame:
"""Pass in the workflow output (generally the workflow name)"""
return pd.read_parquet(f"tests/verbs/data/{output}.parquet")
def compare_outputs(
actual: pd.DataFrame, expected: pd.DataFrame, columns: list[str] | None = None
) -> None:
"""Compare the actual and expected dataframes, optionally specifying columns to compare.
Add Incremental Indexing v1 (#1318) * Create entypoint for cli and api (#1067) * Add cli and api entrypoints for update index * Semver * Update docs * Run tests on feature branch main * Better /main handling in tests * Incremental indexing/file delta (#1123) * Calculate new inputs and deleted inputs on update * Semver * Clear ruff checks * Fix pyright * Fix PyRight * Ruff again * Update relationships after inc index (#1236) * Collapse create final community reports (#1227) * Remove extraneous param * Add community report mocking assertions * Collapse primary report generation * Collapse embeddings * Format * Semver * Remove extraneous check * Move option set * Collapse create base entity graph (#1233) * Collapse create_base_entity_graph * Format/typing * Semver * Fix smoke tests * Simplify assignment * Collapse create summarized entities (#1237) * Collapse entity summarize * Semver * Collapse create base extracted entities (#1235) * Set up base assertions * Replace entity_extract * Finish collapsing workflow * Semver * Update snoke tests * Incremental indexing/update final text units (#1241) * Update final text units * Format * Address comments * Add v1 community merge using time period (#1257) * Add naive community merge using time period * formatting * Query fixes * Add descriptions from merged_entities * Add summarization and embeddings * Use iso format * Ruff * Pyright and smoke tests * Pyright * Pyright * Update parquet for verb tests * Fix smoke tests * Remove sorting * Update smoke tests * Smoke tests * Smoke tests * Updated verb test to ack for latest changes on covariates * Add config for incremental index + Bug fixes (#1317) * Add config for incremental index + Bug fixes * Ruff * Fix smoke tests * Semversioner * Small refactor * Remove unused file * Ruff * Update verb tests inputs * Update verb tests inputs --------- Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
2024-10-30 11:59:44 -06:00
This uses assert_series_equal since we are sometimes intentionally omitting columns from the actual output.
"""
cols = expected.columns if columns is None else columns
assert len(actual) == len(expected), (
f"Expected: {len(expected)} rows, Actual: {len(actual)} rows"
)
for column in cols:
assert column in actual.columns
try:
# dtypes can differ since the test data is read from parquet and our workflow runs in memory
if column != "id": # don't check uuids
assert_series_equal(
actual[column],
expected[column],
check_dtype=False,
check_index=False,
)
except AssertionError:
print("Expected:")
print(expected[column])
print("Actual:")
print(actual[column])
raise
async def update_document_metadata(metadata: list[str], context: PipelineRunContext):
"""Takes the default documents and adds the configured metadata columns for later parsing by the text units and final documents workflows."""
documents = await load_table_from_storage("documents", context.output_storage)
documents["metadata"] = documents[metadata].apply(lambda row: row.to_dict(), axis=1)
await write_table_to_storage(
documents, "documents", context.output_storage
) # write to the runtime context storage only