graphrag/migration_scripts/extract_text_embeddings.ipynb

149 lines
4.3 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## SCRIPT TO EXTRACT EXISTING TEXT EMBEDDINGS INTO A NEW WORKFLOW WITH NEW LOOKUP TABLES"
]
},
{
"cell_type": "code",
2024-10-10 12:05:41 -06:00
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
2024-10-10 12:05:41 -06:00
"\n",
"sys.path.insert(1, \"../../\")"
]
},
{
"cell_type": "code",
2024-10-10 12:05:41 -06:00
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
2024-10-10 12:05:41 -06:00
"import re\n",
"from pathlib import Path\n",
"\n",
"import pandas as pd\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### SET VALUES FOR THE INDEX FOLDER TO BE EXTRACTED"
]
},
{
"cell_type": "code",
2024-10-10 12:05:41 -06:00
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"# set local folder where the index data is located\n",
2024-10-10 12:05:41 -06:00
"#LOCAL_ROOT = \"/Users/gaudy-microsoft/Repositories/unified-copilot/app/data/CHRISTMAS-CAROL\" # noqa: ERA001\n",
"LOCAL_ROOT = \"/Users/gaudy-microsoft/Desktop/test-mock-embeddings\"\n",
"\n",
"# value to decide if the original file should maintain or remove the embedding column\n",
2024-10-10 12:05:41 -06:00
"REMOVE_ORIGINAL_EMBEDDING_COLUMN_IN_SOURCE_FILE = False\n",
"\n",
"#identifier field\n",
"STANDARD_IDENTIFIER_FIELD = \"id\"\n",
"\n",
"#new embedding field name\n",
"NEW_STANDARD_EMBEDDING_FIELD = \"embedding\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2024-10-10 12:05:41 -06:00
"### GENERIC METHOD TO EXTRACT EMBEDDING COLUMNS FROM A FILE AND CREATE A NEW EMBEDDINGS SPECIFIC FILE"
]
},
{
"cell_type": "code",
2024-10-10 12:05:41 -06:00
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
2024-10-10 12:05:41 -06:00
"def extract_text_embedding_from_table(input_path: str, original_embedding_field: str, embeddings_parquet_output_field: str):\n",
" \"\"\"Migrate table for embeddings.\"\"\"\n",
" original_df = pd.read_parquet(input_path)\n",
" no_embeddings_df = original_df.drop(columns=[original_embedding_field])\n",
" \n",
" embeddings_df = original_df[[STANDARD_IDENTIFIER_FIELD, original_embedding_field]]\n",
" embeddings_df = embeddings_df.rename(columns={original_embedding_field: NEW_STANDARD_EMBEDDING_FIELD}) # type: ignore\n",
" embeddings_df.to_parquet(embeddings_parquet_output_field, index=False)\n",
"\n",
2024-10-10 12:05:41 -06:00
" if REMOVE_ORIGINAL_EMBEDDING_COLUMN_IN_SOURCE_FILE is True:\n",
" no_embeddings_df.to_parquet(input_path, index=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
2024-10-10 12:05:41 -06:00
"### ITERATES PER ALL PARQUET FILES INSIDE THE FOLDER AND DETECTS ALL EMBEDDINGS COLUMNS IN ALL OF THEM"
]
},
{
"cell_type": "code",
2024-10-10 12:05:41 -06:00
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading /Users/gaudy-microsoft/Desktop/test-mock-embeddings/create_final_text_units.parquet\n",
"Reading /Users/gaudy-microsoft/Desktop/test-mock-embeddings/create_final_community_reports.parquet\n"
]
}
],
"source": [
"#READ ENTIRE DATA FOLDER\n",
"folder_path = Path(LOCAL_ROOT)\n",
"pattern = r\"^(.*?)(_embedding)$\"\n",
"\n",
"for file_path in folder_path.iterdir():\n",
" if file_path.is_file() and file_path.suffix == \".parquet\":\n",
" print(f\"Reading {file_path}\")\n",
" original_df = pd.read_parquet(str(file_path))\n",
" columns = original_df.columns.tolist()\n",
"\n",
" for column in columns:\n",
" match = re.match(pattern, column)\n",
" if match:\n",
" source_column_name = match.group(1)\n",
" suffix = match.group(2)\n",
" extract_text_embedding_from_table(str(file_path), column, str(file_path.with_suffix(\"\").as_posix()) + \"_embeddings\" + file_path.suffix)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}