graphrag/tests/verbs/test_create_base_text_units.py

66 lines
1.7 KiB
Python
Raw Normal View History

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.index.run.utils import create_run_context
from graphrag.index.workflows.v1.create_base_text_units import (
build_steps,
workflow_name,
)
from .util import (
compare_outputs,
get_config_for_workflow,
get_workflow_output,
load_expected,
load_input_tables,
)
async def test_create_base_text_units():
input_tables = load_input_tables(inputs=[])
expected = load_expected(workflow_name)
context = create_run_context(None, None, None)
config = get_config_for_workflow(workflow_name)
# test data was created with 4o, so we need to match the encoding for chunks to be identical
config["text_chunk"]["strategy"]["encoding_name"] = "o200k_base"
steps = build_steps(config)
await get_workflow_output(
input_tables,
{
"steps": steps,
},
context,
)
actual = await context.runtime_storage.get("base_text_units")
compare_outputs(actual, expected)
async def test_create_base_text_units_with_snapshot():
input_tables = load_input_tables(inputs=[])
context = create_run_context(None, None, None)
config = get_config_for_workflow(workflow_name)
# test data was created with 4o, so we need to match the encoding for chunks to be identical
config["text_chunk"]["strategy"]["encoding_name"] = "o200k_base"
config["snapshot_transient"] = True
steps = build_steps(config)
await get_workflow_output(
input_tables,
{
"steps": steps,
},
context,
)
assert context.storage.keys() == [
"create_base_text_units.parquet"
], "Text unit snapshot keys differ"