2024-09-16 12:10:29 -07:00
|
|
|
# Copyright (c) 2024 Microsoft Corporation.
|
|
|
|
# Licensed under the MIT License
|
|
|
|
|
|
|
|
from typing import cast
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
from datashaper import Workflow
|
2024-09-17 17:04:42 -07:00
|
|
|
from pandas.testing import assert_series_equal
|
2024-09-16 12:10:29 -07:00
|
|
|
|
2024-09-17 10:32:25 -07:00
|
|
|
from graphrag.config import create_graphrag_config
|
|
|
|
from graphrag.index import (
|
|
|
|
PipelineWorkflowConfig,
|
|
|
|
PipelineWorkflowStep,
|
|
|
|
create_pipeline_config,
|
|
|
|
)
|
|
|
|
|
2024-09-16 12:10:29 -07:00
|
|
|
|
|
|
|
def load_input_tables(inputs: list[str]) -> dict[str, pd.DataFrame]:
|
|
|
|
"""Harvest all the referenced input IDs from the workflow being tested and pass them here."""
|
|
|
|
# stick all the inputs in a map - Workflow looks them up by name
|
|
|
|
input_tables: dict[str, pd.DataFrame] = {}
|
2024-09-23 13:24:06 -07:00
|
|
|
|
|
|
|
# all workflows implicitly receive the `input` source, which is formatted as a dataframe after loading from storage
|
|
|
|
# we'll simulate that by just loading one of our output parquets and converting back to equivalent dataframe
|
|
|
|
# so we aren't dealing with storage vagaries (which would become an integration test)
|
|
|
|
source = pd.read_parquet("tests/verbs/data/create_base_documents.parquet")
|
|
|
|
source.rename(columns={"raw_content": "text"}, inplace=True)
|
|
|
|
input_tables["source"] = cast(pd.DataFrame, source[["id", "text", "title"]])
|
|
|
|
|
2024-09-16 12:10:29 -07:00
|
|
|
for input in inputs:
|
|
|
|
# remove the workflow: prefix if it exists, because that is not part of the actual table filename
|
|
|
|
name = input.replace("workflow:", "")
|
|
|
|
input_tables[input] = pd.read_parquet(f"tests/verbs/data/{name}.parquet")
|
|
|
|
return input_tables
|
|
|
|
|
|
|
|
|
|
|
|
def load_expected(output: str) -> pd.DataFrame:
|
|
|
|
"""Pass in the workflow output (generally the workflow name)"""
|
|
|
|
return pd.read_parquet(f"tests/verbs/data/{output}.parquet")
|
|
|
|
|
|
|
|
|
2024-09-17 10:32:25 -07:00
|
|
|
def get_config_for_workflow(name: str) -> PipelineWorkflowConfig:
|
|
|
|
"""Instantiates the bare minimum config to get a default workflow config for testing."""
|
|
|
|
config = create_graphrag_config()
|
|
|
|
pipeline_config = create_pipeline_config(config)
|
|
|
|
print(pipeline_config.workflows)
|
|
|
|
result = next(conf for conf in pipeline_config.workflows if conf.name == name)
|
|
|
|
return cast(PipelineWorkflowConfig, result.config)
|
|
|
|
|
|
|
|
|
2024-09-16 12:10:29 -07:00
|
|
|
async def get_workflow_output(
|
|
|
|
input_tables: dict[str, pd.DataFrame], schema: dict
|
|
|
|
) -> pd.DataFrame:
|
|
|
|
"""Pass in the input tables, the schema, and the output name"""
|
|
|
|
|
|
|
|
# the bare minimum workflow is the pipeline schema and table context
|
|
|
|
workflow = Workflow(
|
|
|
|
schema=schema,
|
|
|
|
input_tables=input_tables,
|
|
|
|
)
|
|
|
|
|
|
|
|
await workflow.run()
|
|
|
|
|
|
|
|
# if there's only one output, it is the default here, no name required
|
|
|
|
return cast(pd.DataFrame, workflow.output())
|
|
|
|
|
|
|
|
|
2024-09-17 17:04:42 -07:00
|
|
|
def compare_outputs(
|
|
|
|
actual: pd.DataFrame, expected: pd.DataFrame, columns: list[str] | None = None
|
|
|
|
) -> None:
|
|
|
|
"""Compare the actual and expected dataframes, optionally specifying columns to compare.
|
|
|
|
This uses assert_series_equal since we are sometimes intentionally omitting columns from the actual output."""
|
|
|
|
cols = expected.columns if columns is None else columns
|
2024-09-23 13:24:06 -07:00
|
|
|
|
|
|
|
assert len(actual) == len(
|
|
|
|
expected
|
|
|
|
), f"Expected: {len(expected)}, Actual: {len(actual)}"
|
|
|
|
|
|
|
|
for column in cols:
|
|
|
|
assert column in actual.columns
|
|
|
|
try:
|
2024-09-17 17:04:42 -07:00
|
|
|
# dtypes can differ since the test data is read from parquet and our workflow runs in memory
|
|
|
|
assert_series_equal(actual[column], expected[column], check_dtype=False)
|
2024-09-23 13:24:06 -07:00
|
|
|
except AssertionError:
|
|
|
|
print("Expected:")
|
|
|
|
print(expected[column])
|
|
|
|
print("Actual:")
|
|
|
|
print(actual[columns])
|
|
|
|
raise
|
2024-09-17 10:32:25 -07:00
|
|
|
|
|
|
|
|
|
|
|
def remove_disabled_steps(
|
|
|
|
steps: list[PipelineWorkflowStep],
|
|
|
|
) -> list[PipelineWorkflowStep]:
|
|
|
|
return [step for step in steps if step.get("enabled", True)]
|