graphrag/tests/verbs/test_create_base_entity_graph.py

167 lines
5.3 KiB
Python
Raw Normal View History

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import pytest
from graphrag.config.enums import LLMType
from graphrag.index.run.utils import create_run_context
from graphrag.index.workflows.v1.create_base_entity_graph import (
build_steps,
workflow_name,
)
from .util import (
get_config_for_workflow,
get_workflow_output,
load_input_tables,
load_test_table,
)
MOCK_LLM_ENTITY_RESPONSES = [
"""
("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company)
##
("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A)
##
("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A)
##
("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2)
##
("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1))
""".strip()
]
MOCK_LLM_ENTITY_CONFIG = {
"type": LLMType.StaticResponse,
"responses": MOCK_LLM_ENTITY_RESPONSES,
}
MOCK_LLM_SUMMARIZATION_RESPONSES = [
"""
This is a MOCK response for the LLM. It is summarized!
""".strip()
]
MOCK_LLM_SUMMARIZATION_CONFIG = {
"type": LLMType.StaticResponse,
"responses": MOCK_LLM_SUMMARIZATION_RESPONSES,
}
async def test_create_base_entity_graph():
input_tables = load_input_tables([
"workflow:create_base_text_units",
])
nodes_expected = load_test_table("base_entity_nodes")
edges_expected = load_test_table("base_relationship_edges")
communities_expected = load_test_table("base_communities")
context = create_run_context(None, None, None)
await context.runtime_storage.set(
"base_text_units", input_tables["workflow:create_base_text_units"]
)
config = get_config_for_workflow(workflow_name)
config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG
config["summarize_descriptions"]["strategy"]["llm"] = MOCK_LLM_SUMMARIZATION_CONFIG
steps = build_steps(config)
await get_workflow_output(
input_tables,
{
"steps": steps,
},
context=context,
)
# graph construction creates transient tables for nodes, edges, and communities
nodes_actual = await context.runtime_storage.get("base_entity_nodes")
edges_actual = await context.runtime_storage.get("base_relationship_edges")
communities_actual = await context.runtime_storage.get("base_communities")
assert len(nodes_actual.columns) == len(nodes_expected.columns), (
"Nodes dataframe columns differ"
)
assert len(edges_actual.columns) == len(edges_expected.columns), (
"Edges dataframe columns differ"
)
assert len(communities_actual.columns) == len(communities_expected.columns), (
"Edges dataframe columns differ"
)
# TODO: with the combined verb we can't force summarization
# this is because the mock responses always result in a single description, which is returned verbatim rather than summarized
# we need to update the mocking to provide somewhat unique graphs so a true merge happens
# the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below
assert nodes_actual["description"].values[0] == "Company_A is a test company"
assert len(context.storage.keys()) == 0, "Storage should be empty"
async def test_create_base_entity_graph_with_snapshots():
input_tables = load_input_tables([
"workflow:create_base_text_units",
])
context = create_run_context(None, None, None)
await context.runtime_storage.set(
"base_text_units", input_tables["workflow:create_base_text_units"]
)
config = get_config_for_workflow(workflow_name)
config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG
config["summarize_descriptions"]["strategy"]["llm"] = MOCK_LLM_SUMMARIZATION_CONFIG
config["snapshot_graphml"] = True
config["snapshot_transient"] = True
config["embed_graph_enabled"] = True # need this on in order to see the snapshot
steps = build_steps(config)
await get_workflow_output(
input_tables,
{
"steps": steps,
},
context=context,
)
assert context.storage.keys() == [
"graph.graphml",
"base_entity_nodes.parquet",
"base_relationship_edges.parquet",
"base_communities.parquet",
], "Graph snapshot keys differ"
async def test_create_base_entity_graph_missing_llm_throws():
input_tables = load_input_tables([
"workflow:create_base_text_units",
])
context = create_run_context(None, None, None)
await context.runtime_storage.set(
"base_text_units", input_tables["workflow:create_base_text_units"]
)
config = get_config_for_workflow(workflow_name)
config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG
del config["summarize_descriptions"]["strategy"]["llm"]
steps = build_steps(config)
with pytest.raises(ValueError): # noqa PT011
await get_workflow_output(
input_tables,
{
"steps": steps,
},
context=context,
)