graphrag/tests/verbs/test_create_final_covariates.py

110 lines
4.1 KiB
Python
Raw Normal View History

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import pytest
from datashaper.errors import VerbParallelizationError
from pandas.testing import assert_series_equal
from graphrag.config.enums import LLMType
from graphrag.index.run.utils import create_run_context
from graphrag.index.workflows.v1.create_final_covariates import (
build_steps,
workflow_name,
)
from .util import (
get_config_for_workflow,
get_workflow_output,
load_expected,
load_input_tables,
)
MOCK_LLM_RESPONSES = [
"""
(COMPANY A<|>GOVERNMENT AGENCY B<|>ANTI-COMPETITIVE PRACTICES<|>TRUE<|>2022-01-10T00:00:00<|>2022-01-10T00:00:00<|>Company A was found to engage in anti-competitive practices because it was fined for bid rigging in multiple public tenders published by Government Agency B according to an article published on 2022/01/10<|>According to an article published on 2022/01/10, Company A was fined for bid rigging while participating in multiple public tenders published by Government Agency B.)
""".strip()
]
MOCK_LLM_CONFIG = {"type": LLMType.StaticResponse, "responses": MOCK_LLM_RESPONSES}
async def test_create_final_covariates():
input_tables = load_input_tables(["workflow:create_base_text_units"])
expected = load_expected(workflow_name)
context = create_run_context(None, None, None)
await context.runtime_storage.set(
"base_text_units", input_tables["workflow:create_base_text_units"]
)
config = get_config_for_workflow(workflow_name)
config["claim_extract"]["strategy"]["llm"] = MOCK_LLM_CONFIG
steps = build_steps(config)
actual = await get_workflow_output(
input_tables,
{
"steps": steps,
},
context,
)
input = input_tables["workflow:create_base_text_units"]
Add Incremental Indexing v1 (#1318) * Create entypoint for cli and api (#1067) * Add cli and api entrypoints for update index * Semver * Update docs * Run tests on feature branch main * Better /main handling in tests * Incremental indexing/file delta (#1123) * Calculate new inputs and deleted inputs on update * Semver * Clear ruff checks * Fix pyright * Fix PyRight * Ruff again * Update relationships after inc index (#1236) * Collapse create final community reports (#1227) * Remove extraneous param * Add community report mocking assertions * Collapse primary report generation * Collapse embeddings * Format * Semver * Remove extraneous check * Move option set * Collapse create base entity graph (#1233) * Collapse create_base_entity_graph * Format/typing * Semver * Fix smoke tests * Simplify assignment * Collapse create summarized entities (#1237) * Collapse entity summarize * Semver * Collapse create base extracted entities (#1235) * Set up base assertions * Replace entity_extract * Finish collapsing workflow * Semver * Update snoke tests * Incremental indexing/update final text units (#1241) * Update final text units * Format * Address comments * Add v1 community merge using time period (#1257) * Add naive community merge using time period * formatting * Query fixes * Add descriptions from merged_entities * Add summarization and embeddings * Use iso format * Ruff * Pyright and smoke tests * Pyright * Pyright * Update parquet for verb tests * Fix smoke tests * Remove sorting * Update smoke tests * Smoke tests * Smoke tests * Updated verb test to ack for latest changes on covariates * Add config for incremental index + Bug fixes (#1317) * Add config for incremental index + Bug fixes * Ruff * Fix smoke tests * Semversioner * Small refactor * Remove unused file * Ruff * Update verb tests inputs * Update verb tests inputs --------- Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
2024-10-30 11:59:44 -06:00
assert len(actual.columns) == len(expected.columns)
# our mock only returns one covariate per text unit, so that's a 1:1 mapping versus the LLM-extracted content in the test data
assert len(actual) == len(input)
# assert all of the columns that covariates copied from the input
assert_series_equal(actual["text_unit_id"], input["id"], check_names=False)
assert_series_equal(actual["text_unit_id"], input["chunk_id"], check_names=False)
assert_series_equal(actual["document_ids"], input["document_ids"])
assert_series_equal(actual["n_tokens"], input["n_tokens"])
# make sure the human ids are incrementing and cast to strings
assert actual["human_readable_id"][0] == "1"
assert actual["human_readable_id"][1] == "2"
# check that the mock data is parsed and inserted into the correct columns
assert actual["covariate_type"][0] == "claim"
assert actual["subject_id"][0] == "COMPANY A"
assert actual["object_id"][0] == "GOVERNMENT AGENCY B"
assert actual["type"][0] == "ANTI-COMPETITIVE PRACTICES"
assert actual["status"][0] == "TRUE"
assert actual["start_date"][0] == "2022-01-10T00:00:00"
assert actual["end_date"][0] == "2022-01-10T00:00:00"
assert (
actual["description"][0]
== "Company A was found to engage in anti-competitive practices because it was fined for bid rigging in multiple public tenders published by Government Agency B according to an article published on 2022/01/10"
)
assert (
actual["source_text"][0]
== "According to an article published on 2022/01/10, Company A was fined for bid rigging while participating in multiple public tenders published by Government Agency B."
)
async def test_create_final_covariates_missing_llm_throws():
input_tables = load_input_tables(["workflow:create_base_text_units"])
context = create_run_context(None, None, None)
await context.runtime_storage.set(
"base_text_units", input_tables["workflow:create_base_text_units"]
)
config = get_config_for_workflow(workflow_name)
del config["claim_extract"]["strategy"]["llm"]
steps = build_steps(config)
with pytest.raises(VerbParallelizationError):
await get_workflow_output(
input_tables,
{
"steps": steps,
},
context,
)