graphrag/tests/verbs/test_generate_text_embeddings.py

83 lines
2.4 KiB
Python
Raw Normal View History

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from io import BytesIO
import pandas as pd
from graphrag.index.config.embeddings import (
all_embeddings,
)
from graphrag.index.run.utils import create_run_context
from graphrag.index.workflows.v1.generate_text_embeddings import (
build_steps,
workflow_name,
)
from .util import (
get_config_for_workflow,
get_workflow_output,
load_input_tables,
)
async def test_generate_text_embeddings():
input_tables = load_input_tables(
inputs=[
"workflow:create_final_documents",
"workflow:create_final_relationships",
"workflow:create_final_text_units",
"workflow:create_final_entities",
"workflow:create_final_community_reports",
]
)
context = create_run_context(None, None, None)
config = get_config_for_workflow(workflow_name)
config["text_embed"]["strategy"]["type"] = "mock"
config["snapshot_embeddings"] = True
config["embedded_fields"] = all_embeddings
steps = build_steps(config)
await get_workflow_output(
input_tables,
{
"steps": steps,
},
context,
)
parquet_files = context.storage.keys()
for field in all_embeddings:
assert f"embeddings.{field}.parquet" in parquet_files
# entity description should always be here, let's assert its format
entity_description_embeddings_buffer = BytesIO(
await context.storage.get(
"embeddings.entity.description.parquet", as_bytes=True
)
)
entity_description_embeddings = pd.read_parquet(
entity_description_embeddings_buffer
)
assert len(entity_description_embeddings.columns) == 2
assert "id" in entity_description_embeddings.columns
assert "embedding" in entity_description_embeddings.columns
# every other embedding is optional but we've turned them all on, so check a random one
document_raw_content_embeddings_buffer = BytesIO(
await context.storage.get(
"embeddings.document.raw_content.parquet", as_bytes=True
)
)
document_raw_content_embeddings = pd.read_parquet(
document_raw_content_embeddings_buffer
)
assert len(document_raw_content_embeddings.columns) == 2
assert "id" in document_raw_content_embeddings.columns
assert "embedding" in document_raw_content_embeddings.columns