mirror of
https://github.com/microsoft/graphrag.git
synced 2025-07-06 08:30:54 +00:00
83 lines
2.4 KiB
Python
83 lines
2.4 KiB
Python
![]() |
# Copyright (c) 2024 Microsoft Corporation.
|
||
|
# Licensed under the MIT License
|
||
|
|
||
|
from io import BytesIO
|
||
|
|
||
|
import pandas as pd
|
||
|
|
||
|
from graphrag.index.config.embeddings import (
|
||
|
all_embeddings,
|
||
|
)
|
||
|
from graphrag.index.run.utils import create_run_context
|
||
|
from graphrag.index.workflows.v1.generate_text_embeddings import (
|
||
|
build_steps,
|
||
|
workflow_name,
|
||
|
)
|
||
|
|
||
|
from .util import (
|
||
|
get_config_for_workflow,
|
||
|
get_workflow_output,
|
||
|
load_input_tables,
|
||
|
)
|
||
|
|
||
|
|
||
|
async def test_generate_text_embeddings():
|
||
|
input_tables = load_input_tables(
|
||
|
inputs=[
|
||
|
"workflow:create_final_documents",
|
||
|
"workflow:create_final_relationships",
|
||
|
"workflow:create_final_text_units",
|
||
|
"workflow:create_final_entities",
|
||
|
"workflow:create_final_community_reports",
|
||
|
]
|
||
|
)
|
||
|
context = create_run_context(None, None, None)
|
||
|
|
||
|
config = get_config_for_workflow(workflow_name)
|
||
|
|
||
|
config["text_embed"]["strategy"]["type"] = "mock"
|
||
|
config["snapshot_embeddings"] = True
|
||
|
|
||
|
config["embedded_fields"] = all_embeddings
|
||
|
|
||
|
steps = build_steps(config)
|
||
|
|
||
|
await get_workflow_output(
|
||
|
input_tables,
|
||
|
{
|
||
|
"steps": steps,
|
||
|
},
|
||
|
context,
|
||
|
)
|
||
|
|
||
|
parquet_files = context.storage.keys()
|
||
|
|
||
|
for field in all_embeddings:
|
||
|
assert f"embeddings.{field}.parquet" in parquet_files
|
||
|
|
||
|
# entity description should always be here, let's assert its format
|
||
|
entity_description_embeddings_buffer = BytesIO(
|
||
|
await context.storage.get(
|
||
|
"embeddings.entity.description.parquet", as_bytes=True
|
||
|
)
|
||
|
)
|
||
|
entity_description_embeddings = pd.read_parquet(
|
||
|
entity_description_embeddings_buffer
|
||
|
)
|
||
|
assert len(entity_description_embeddings.columns) == 2
|
||
|
assert "id" in entity_description_embeddings.columns
|
||
|
assert "embedding" in entity_description_embeddings.columns
|
||
|
|
||
|
# every other embedding is optional but we've turned them all on, so check a random one
|
||
|
document_raw_content_embeddings_buffer = BytesIO(
|
||
|
await context.storage.get(
|
||
|
"embeddings.document.raw_content.parquet", as_bytes=True
|
||
|
)
|
||
|
)
|
||
|
document_raw_content_embeddings = pd.read_parquet(
|
||
|
document_raw_content_embeddings_buffer
|
||
|
)
|
||
|
assert len(document_raw_content_embeddings.columns) == 2
|
||
|
assert "id" in document_raw_content_embeddings.columns
|
||
|
assert "embedding" in document_raw_content_embeddings.columns
|