Collapse create final documents (#1217)

* Collapse create_final_documents

* Semver
This commit is contained in:
Nathan Evans 2024-09-25 15:50:46 -07:00 committed by GitHub
parent dda4edd0fd
commit 14750f4d37
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 128 additions and 14 deletions

View File

@ -0,0 +1,4 @@
{
"type": "patch",
"description": "Collapse create-final-documents."
}

View File

@ -16,7 +16,6 @@ def build_steps(
## Dependencies ## Dependencies
* `workflow:create_base_documents` * `workflow:create_base_documents`
* `workflow:create_base_document_nodes`
""" """
base_text_embed = config.get("text_embed", {}) base_text_embed = config.get("text_embed", {})
document_raw_content_embed_config = config.get( document_raw_content_embed_config = config.get(
@ -25,17 +24,12 @@ def build_steps(
skip_raw_content_embedding = config.get("skip_raw_content_embedding", False) skip_raw_content_embedding = config.get("skip_raw_content_embedding", False)
return [ return [
{ {
"verb": "rename", "verb": "create_final_documents",
"args": {"columns": {"text_units": "text_unit_ids"}}, "args": {
"columns": {"text_units": "text_unit_ids"},
"skip_embedding": skip_raw_content_embedding,
"text_embed": document_raw_content_embed_config,
},
"input": {"source": "workflow:create_base_documents"}, "input": {"source": "workflow:create_base_documents"},
}, },
{
"verb": "text_embed",
"enabled": not skip_raw_content_embedding,
"args": {
"column": "raw_content",
"to": "raw_content_embedding",
**document_raw_content_embed_config,
},
},
] ]

View File

@ -6,6 +6,7 @@
from .create_base_documents import create_base_documents from .create_base_documents import create_base_documents
from .create_base_text_units import create_base_text_units from .create_base_text_units import create_base_text_units
from .create_final_communities import create_final_communities from .create_final_communities import create_final_communities
from .create_final_documents import create_final_documents
from .create_final_nodes import create_final_nodes from .create_final_nodes import create_final_nodes
from .create_final_relationships import ( from .create_final_relationships import (
create_final_relationships, create_final_relationships,
@ -16,6 +17,7 @@ __all__ = [
"create_base_documents", "create_base_documents",
"create_base_text_units", "create_base_text_units",
"create_final_communities", "create_final_communities",
"create_final_documents",
"create_final_nodes", "create_final_nodes",
"create_final_relationships", "create_final_relationships",
"create_final_text_units_pre_embedding", "create_final_text_units_pre_embedding",

View File

@ -0,0 +1,48 @@
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
"""All the steps to transform final documents."""
from typing import cast
import pandas as pd
from datashaper import (
Table,
VerbCallbacks,
VerbInput,
verb,
)
from datashaper.table_store.types import VerbResult, create_verb_result
from graphrag.index.cache import PipelineCache
from graphrag.index.verbs.text.embed.text_embed import text_embed_df
@verb(
name="create_final_documents",
treats_input_tables_as_immutable=True,
)
async def create_final_documents(
input: VerbInput,
callbacks: VerbCallbacks,
cache: PipelineCache,
text_embed: dict,
skip_embedding: bool = False,
**_kwargs: dict,
) -> VerbResult:
"""All the steps to transform final documents."""
source = cast(pd.DataFrame, input.get_input())
source.rename(columns={"text_units": "text_unit_ids"}, inplace=True)
if not skip_embedding:
source = await text_embed_df(
source,
callbacks,
cache,
column="raw_content",
strategy=text_embed["strategy"],
to="raw_content_embedding",
)
return create_verb_result(cast(Table, source))

View File

@ -1,7 +1,7 @@
# Copyright (c) 2024 Microsoft Corporation. # Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License # Licensed under the MIT License
"""All the steps to transform final relationships before they are embedded.""" """All the steps to transform final relationships."""
from typing import Any, cast from typing import Any, cast
@ -35,7 +35,7 @@ async def create_final_relationships(
skip_embedding: bool = False, skip_embedding: bool = False,
**_kwargs: dict, **_kwargs: dict,
) -> VerbResult: ) -> VerbResult:
"""All the steps to transform final relationships before they are embedded.""" """All the steps to transform final relationships."""
table = cast(pd.DataFrame, input.get_input()) table = cast(pd.DataFrame, input.get_input())
nodes = cast(pd.DataFrame, get_required_input_table(input, "nodes").table) nodes = cast(pd.DataFrame, get_required_input_table(input, "nodes").table)

View File

@ -0,0 +1,66 @@
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.index.workflows.v1.create_final_documents import (
build_steps,
workflow_name,
)
from .util import (
compare_outputs,
get_config_for_workflow,
get_workflow_output,
load_expected,
load_input_tables,
remove_disabled_steps,
)
async def test_create_final_documents():
input_tables = load_input_tables([
"workflow:create_base_documents",
])
expected = load_expected(workflow_name)
config = get_config_for_workflow(workflow_name)
config["skip_raw_content_embedding"] = True
steps = remove_disabled_steps(build_steps(config))
actual = await get_workflow_output(
input_tables,
{
"steps": steps,
},
)
compare_outputs(actual, expected)
async def test_create_final_documents_with_embeddings():
input_tables = load_input_tables([
"workflow:create_base_documents",
])
expected = load_expected(workflow_name)
config = get_config_for_workflow(workflow_name)
config["skip_raw_content_embedding"] = False
# default config has a detailed standard embed config
# just override the strategy to mock so the rest of the required parameters are in place
config["document_raw_content_embed"]["strategy"]["type"] = "mock"
steps = remove_disabled_steps(build_steps(config))
actual = await get_workflow_output(
input_tables,
{
"steps": steps,
},
)
assert "raw_content_embedding" in actual.columns
assert len(actual.columns) == len(expected.columns) + 1
# the mock impl returns an array of 3 floats for each embedding
assert len(actual["raw_content_embedding"][0]) == 3