Merge branch 'main' into incremental_indexing/main

This commit is contained in:
Alonso Guevara 2024-09-10 16:04:01 -06:00
commit 67f4b02ecd
18 changed files with 511 additions and 434 deletions

66
.semversioner/0.3.3.json Normal file
View File

@ -0,0 +1,66 @@
{
"changes": [
{
"description": "Add entrypoints for incremental indexing",
"type": "patch"
},
{
"description": "Clean up and organize run index code",
"type": "patch"
},
{
"description": "Consistent config loading. Resolves #99 and Resolves #1049",
"type": "patch"
},
{
"description": "Fix circular dependency when running prompt tune api directly",
"type": "patch"
},
{
"description": "Fix default settings for embedding",
"type": "patch"
},
{
"description": "Fix img for auto tune",
"type": "patch"
},
{
"description": "Fix img width",
"type": "patch"
},
{
"description": "Fixed a bug in prompt tuning process",
"type": "patch"
},
{
"description": "Refactor text unit build at local search",
"type": "patch"
},
{
"description": "Update Prompt Tuning docs",
"type": "patch"
},
{
"description": "Update create_pipeline_config.py",
"type": "patch"
},
{
"description": "Update prompt tune command in docs",
"type": "patch"
},
{
"description": "add querying from azure blob storage",
"type": "patch"
},
{
"description": "fix setting base_dir to full paths when not using file system.",
"type": "patch"
},
{
"description": "fix strategy config in entity_extraction",
"type": "patch"
}
],
"created_at": "2024-09-10T19:51:24+00:00",
"version": "0.3.3"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "fix strategy config in entity_extraction"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Fixed a bug in prompt tuning process"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Fix default settings for embedding"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Refactor text unit build at local search"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Fix circular dependency when running prompt tune api directly"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Update Prompt Tuning docs"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Update prompt tune command in docs"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Fix img for auto tune"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Fix img width"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Consistent config loading. Resolves #99 and Resolves #1049"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Add entrypoints for incremental indexing"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "Clean up and organize run index code"
}

View File

@ -1,4 +0,0 @@
{
"type": "patch",
"description": "fix setting base_dir to full paths when not using file system."
}

View File

@ -1,6 +1,24 @@
# Changelog # Changelog
Note: version releases in the 0.x.y range may introduce breaking changes. Note: version releases in the 0.x.y range may introduce breaking changes.
## 0.3.3
- patch: Add entrypoints for incremental indexing
- patch: Clean up and organize run index code
- patch: Consistent config loading. Resolves #99 and Resolves #1049
- patch: Fix circular dependency when running prompt tune api directly
- patch: Fix default settings for embedding
- patch: Fix img for auto tune
- patch: Fix img width
- patch: Fixed a bug in prompt tuning process
- patch: Refactor text unit build at local search
- patch: Update Prompt Tuning docs
- patch: Update create_pipeline_config.py
- patch: Update prompt tune command in docs
- patch: add querying from azure blob storage
- patch: fix setting base_dir to full paths when not using file system.
- patch: fix strategy config in entity_extraction
## 0.3.2 ## 0.3.2
- patch: Add context data to query API responses. - patch: Add context data to query API responses.

View File

@ -274,7 +274,7 @@ def _get_embedding_settings(
# #
strategy = settings.resolved_strategy() # get the default strategy strategy = settings.resolved_strategy() # get the default strategy
strategy.update({ strategy.update({
"vector_store": {**vector_store_settings, **(vector_store_params or {})} "vector_store": {**(vector_store_params or {}), **vector_store_settings}
}) # update the default strategy with the vector store settings }) # update the default strategy with the vector store settings
# This ensures the vector store config is part of the strategy and not the global config # This ensures the vector store config is part of the strategy and not the global config
return { return {

View File

@ -9,8 +9,14 @@ from pathlib import Path
import pandas as pd import pandas as pd
from graphrag.config import load_config, resolve_path from graphrag.config import (
GraphRagConfig,
load_config,
resolve_path,
)
from graphrag.index.create_pipeline_config import create_pipeline_config
from graphrag.index.progress import PrintProgressReporter from graphrag.index.progress import PrintProgressReporter
from graphrag.utils.storage import _create_storage, _load_table_from_storage
from . import api from . import api
@ -36,17 +42,21 @@ def run_global_search(
if data_dir: if data_dir:
config.storage.base_dir = str(resolve_path(data_dir, root)) config.storage.base_dir = str(resolve_path(data_dir, root))
data_path = Path(config.storage.base_dir).resolve() dataframe_dict = _resolve_parquet_files(
root_dir=root_dir,
final_nodes: pd.DataFrame = pd.read_parquet( config=config,
data_path / "create_final_nodes.parquet" parquet_list=[
) "create_final_nodes.parquet",
final_entities: pd.DataFrame = pd.read_parquet( "create_final_entities.parquet",
data_path / "create_final_entities.parquet" "create_final_community_reports.parquet",
) ],
final_community_reports: pd.DataFrame = pd.read_parquet( optional_list=[],
data_path / "create_final_community_reports.parquet"
) )
final_nodes: pd.DataFrame = dataframe_dict["create_final_nodes"]
final_entities: pd.DataFrame = dataframe_dict["create_final_entities"]
final_community_reports: pd.DataFrame = dataframe_dict[
"create_final_community_reports"
]
# call the Query API # call the Query API
if streaming: if streaming:
@ -112,23 +122,26 @@ def run_local_search(
if data_dir: if data_dir:
config.storage.base_dir = str(resolve_path(data_dir, root)) config.storage.base_dir = str(resolve_path(data_dir, root))
data_path = Path(config.storage.base_dir).resolve() dataframe_dict = _resolve_parquet_files(
root_dir=root_dir,
final_nodes = pd.read_parquet(data_path / "create_final_nodes.parquet") config=config,
final_community_reports = pd.read_parquet( parquet_list=[
data_path / "create_final_community_reports.parquet" "create_final_nodes.parquet",
) "create_final_community_reports.parquet",
final_text_units = pd.read_parquet(data_path / "create_final_text_units.parquet") "create_final_text_units.parquet",
final_relationships = pd.read_parquet( "create_final_relationships.parquet",
data_path / "create_final_relationships.parquet" "create_final_entities.parquet",
) ],
final_entities = pd.read_parquet(data_path / "create_final_entities.parquet") optional_list=["create_final_covariates.parquet"],
final_covariates_path = data_path / "create_final_covariates.parquet"
final_covariates = (
pd.read_parquet(final_covariates_path)
if final_covariates_path.exists()
else None
) )
final_nodes: pd.DataFrame = dataframe_dict["create_final_nodes"]
final_community_reports: pd.DataFrame = dataframe_dict[
"create_final_community_reports"
]
final_text_units: pd.DataFrame = dataframe_dict["create_final_text_units"]
final_relationships: pd.DataFrame = dataframe_dict["create_final_relationships"]
final_entities: pd.DataFrame = dataframe_dict["create_final_entities"]
final_covariates: pd.DataFrame | None = dataframe_dict["create_final_covariates"]
# call the Query API # call the Query API
if streaming: if streaming:
@ -179,3 +192,35 @@ def run_local_search(
# NOTE: we return the response and context data here purely as a complete demonstration of the API. # NOTE: we return the response and context data here purely as a complete demonstration of the API.
# External users should use the API directly to get the response and context data. # External users should use the API directly to get the response and context data.
return response, context_data return response, context_data
def _resolve_parquet_files(
root_dir: str,
config: GraphRagConfig,
parquet_list: list[str],
optional_list: list[str],
) -> dict[str, pd.DataFrame]:
"""Read parquet files to a dataframe dict."""
dataframe_dict = {}
pipeline_config = create_pipeline_config(config)
storage_obj = _create_storage(root_dir=root_dir, config=pipeline_config.storage)
for parquet_file in parquet_list:
df_key = parquet_file.split(".")[0]
df_value = asyncio.run(
_load_table_from_storage(name=parquet_file, storage=storage_obj)
)
dataframe_dict[df_key] = df_value
# for optional parquet files, set the dict entry to None instead of erroring out if it does not exist
for optional_file in optional_list:
file_exists = asyncio.run(storage_obj.has(optional_file))
df_key = optional_file.split(".")[0]
if file_exists:
df_value = asyncio.run(
_load_table_from_storage(name=optional_file, storage=storage_obj)
)
dataframe_dict[df_key] = df_value
else:
dataframe_dict[df_key] = None
return dataframe_dict

View File

@ -1,7 +1,7 @@
[tool.poetry] [tool.poetry]
name = "graphrag" name = "graphrag"
# Maintainers: do not change the version here manually, use ./scripts/release.sh # Maintainers: do not change the version here manually, use ./scripts/release.sh
version = "0.3.2" version = "0.3.3"
description = "" description = ""
authors = [ authors = [
"Alonso Guevara Fernández <alonsog@microsoft.com>", "Alonso Guevara Fernández <alonsog@microsoft.com>",