* Add cache to build_noun_graph

* Semver
This commit is contained in:
Nathan Evans 2025-02-10 11:00:51 -08:00 committed by GitHub
parent c02ab0984a
commit a6a78d5897
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 68 additions and 9 deletions

View File

@ -0,0 +1,4 @@
{
"type": "patch",
"description": "Add caching to NLP extractor."
}

View File

@ -64,3 +64,7 @@ class ExtractGraphNLPConfig(BaseModel):
text_analyzer: TextAnalyzerConfig = Field( text_analyzer: TextAnalyzerConfig = Field(
description="The text analyzer configuration.", default=TextAnalyzerConfig() description="The text analyzer configuration.", default=TextAnalyzerConfig()
) )
parallelization_num_threads: int = Field(
description="The number of threads to use for the extraction process.",
default=defs.PARALLELIZATION_NUM_THREADS,
)

View File

@ -5,6 +5,7 @@
import pandas as pd import pandas as pd
from graphrag.cache.pipeline_cache import PipelineCache
from graphrag.callbacks.workflow_callbacks import WorkflowCallbacks from graphrag.callbacks.workflow_callbacks import WorkflowCallbacks
from graphrag.config.models.embed_graph_config import EmbedGraphConfig from graphrag.config.models.embed_graph_config import EmbedGraphConfig
from graphrag.config.models.extract_graph_nlp_config import ExtractGraphNLPConfig from graphrag.config.models.extract_graph_nlp_config import ExtractGraphNLPConfig
@ -20,9 +21,10 @@ from graphrag.index.operations.graph_to_dataframes import graph_to_dataframes
from graphrag.index.operations.prune_graph import prune_graph from graphrag.index.operations.prune_graph import prune_graph
def extract_graph_nlp( async def extract_graph_nlp(
text_units: pd.DataFrame, text_units: pd.DataFrame,
callbacks: WorkflowCallbacks, callbacks: WorkflowCallbacks,
cache: PipelineCache,
extraction_config: ExtractGraphNLPConfig, extraction_config: ExtractGraphNLPConfig,
pruning_config: PruneGraphConfig, pruning_config: PruneGraphConfig,
embed_config: EmbedGraphConfig | None = None, embed_config: EmbedGraphConfig | None = None,
@ -31,10 +33,12 @@ def extract_graph_nlp(
"""All the steps to create the base entity graph.""" """All the steps to create the base entity graph."""
text_analyzer_config = extraction_config.text_analyzer text_analyzer_config = extraction_config.text_analyzer
text_analyzer = create_noun_phrase_extractor(text_analyzer_config) text_analyzer = create_noun_phrase_extractor(text_analyzer_config)
extracted_nodes, extracted_edges = build_noun_graph( extracted_nodes, extracted_edges = await build_noun_graph(
text_units, text_units,
text_analyzer=text_analyzer, text_analyzer=text_analyzer,
normalize_edge_weights=extraction_config.normalize_edge_weights, normalize_edge_weights=extraction_config.normalize_edge_weights,
num_threads=extraction_config.parallelization_num_threads,
cache=cache,
) )
# create a temporary graph to prune, then turn it back into dataframes # create a temporary graph to prune, then turn it back into dataframes

View File

@ -7,27 +7,38 @@ import math
import pandas as pd import pandas as pd
from graphrag.cache.noop_pipeline_cache import NoopPipelineCache
from graphrag.cache.pipeline_cache import PipelineCache
from graphrag.config.enums import AsyncType
from graphrag.index.operations.build_noun_graph.np_extractors.base import ( from graphrag.index.operations.build_noun_graph.np_extractors.base import (
BaseNounPhraseExtractor, BaseNounPhraseExtractor,
) )
from graphrag.index.run.derive_from_rows import derive_from_rows
from graphrag.index.utils.hashing import gen_sha512_hash
def build_noun_graph( async def build_noun_graph(
text_unit_df: pd.DataFrame, text_unit_df: pd.DataFrame,
text_analyzer: BaseNounPhraseExtractor, text_analyzer: BaseNounPhraseExtractor,
normalize_edge_weights: bool, normalize_edge_weights: bool,
num_threads: int = 4,
cache: PipelineCache | None = None,
) -> tuple[pd.DataFrame, pd.DataFrame]: ) -> tuple[pd.DataFrame, pd.DataFrame]:
"""Build a noun graph from text units.""" """Build a noun graph from text units."""
text_units = text_unit_df.loc[:, ["id", "text"]] text_units = text_unit_df.loc[:, ["id", "text"]]
nodes_df = _extract_nodes(text_units, text_analyzer) nodes_df = await _extract_nodes(
text_units, text_analyzer, num_threads=num_threads, cache=cache
)
edges_df = _extract_edges(nodes_df, normalize_edge_weights=normalize_edge_weights) edges_df = _extract_edges(nodes_df, normalize_edge_weights=normalize_edge_weights)
return (nodes_df, edges_df) return (nodes_df, edges_df)
def _extract_nodes( async def _extract_nodes(
text_unit_df: pd.DataFrame, text_unit_df: pd.DataFrame,
text_analyzer: BaseNounPhraseExtractor, text_analyzer: BaseNounPhraseExtractor,
num_threads: int = 4,
cache: PipelineCache | None = None,
) -> pd.DataFrame: ) -> pd.DataFrame:
""" """
Extract initial nodes and edges from text units. Extract initial nodes and edges from text units.
@ -35,9 +46,26 @@ def _extract_nodes(
Input: text unit df with schema [id, text, document_id] Input: text unit df with schema [id, text, document_id]
Returns a dataframe with schema [id, title, freq, text_unit_ids]. Returns a dataframe with schema [id, title, freq, text_unit_ids].
""" """
text_unit_df["noun_phrases"] = text_unit_df["text"].apply( cache = cache or NoopPipelineCache()
lambda text: text_analyzer.extract(text) cache = cache.child("extract_noun_phrases")
async def extract(row):
text = row["text"]
attrs = {"text": text, "analyzer": str(text_analyzer)}
key = gen_sha512_hash(attrs, attrs.keys())
result = await cache.get(key)
if not result:
result = text_analyzer.extract(text)
await cache.set(key, result)
return result
text_unit_df["noun_phrases"] = await derive_from_rows(
text_unit_df,
extract,
num_threads=num_threads,
async_type=AsyncType.Threaded,
) )
noun_node_df = text_unit_df.explode("noun_phrases") noun_node_df = text_unit_df.explode("noun_phrases")
noun_node_df = noun_node_df.rename( noun_node_df = noun_node_df.rename(
columns={"noun_phrases": "title", "id": "text_unit_id"} columns={"noun_phrases": "title", "id": "text_unit_id"}

View File

@ -33,3 +33,7 @@ class BaseNounPhraseExtractor(metaclass=ABCMeta):
Returns: List of noun phrases. Returns: List of noun phrases.
""" """
@abstractmethod
def __str__(self) -> str:
"""Return string representation of the extractor, used for cache key generation."""

View File

@ -172,3 +172,7 @@ class CFGNounPhraseExtractor(BaseNounPhraseExtractor):
cleaned_tokens, self.max_word_length cleaned_tokens, self.max_word_length
), ),
} }
def __str__(self) -> str:
"""Return string representation of the extractor, used for cache key generation."""
return f"cfg_{self.model_name}_{self.max_word_length}_{self.include_named_entities}_{self.exclude_entity_tags}_{self.exclude_pos_tags}_{self.exclude_nouns}_{self.word_delimiter}_{self.noun_phrase_grammars}_{self.noun_phrase_tags}"

View File

@ -117,3 +117,7 @@ class RegexENNounPhraseExtractor(BaseNounPhraseExtractor):
"has_compound_words": has_compound_words, "has_compound_words": has_compound_words,
"has_valid_tokens": has_valid_tokens, "has_valid_tokens": has_valid_tokens,
} }
def __str__(self) -> str:
"""Return string representation of the extractor, used for cache key generation."""
return f"regex_en_{self.exclude_nouns}_{self.max_word_length}_{self.word_delimiter}"

View File

@ -157,3 +157,7 @@ class SyntacticNounPhraseExtractor(BaseNounPhraseExtractor):
cleaned_token_texts, self.max_word_length cleaned_token_texts, self.max_word_length
), ),
} }
def __str__(self) -> str:
"""Return string representation of the extractor, used for cache key generation."""
return f"syntactic_{self.model_name}_{self.max_word_length}_{self.include_named_entities}_{self.exclude_entity_tags}_{self.exclude_pos_tags}_{self.exclude_nouns}_{self.word_delimiter}"

View File

@ -12,6 +12,7 @@ from typing import Any, TypeVar, cast
import pandas as pd import pandas as pd
from graphrag.callbacks.noop_workflow_callbacks import NoopWorkflowCallbacks
from graphrag.callbacks.workflow_callbacks import WorkflowCallbacks from graphrag.callbacks.workflow_callbacks import WorkflowCallbacks
from graphrag.config.enums import AsyncType from graphrag.config.enums import AsyncType
from graphrag.logger.progress import progress_ticker from graphrag.logger.progress import progress_ticker
@ -33,11 +34,12 @@ class ParallelizationError(ValueError):
async def derive_from_rows( async def derive_from_rows(
input: pd.DataFrame, input: pd.DataFrame,
transform: Callable[[pd.Series], Awaitable[ItemType]], transform: Callable[[pd.Series], Awaitable[ItemType]],
callbacks: WorkflowCallbacks, callbacks: WorkflowCallbacks | None = None,
num_threads: int = 4, num_threads: int = 4,
async_type: AsyncType = AsyncType.AsyncIO, async_type: AsyncType = AsyncType.AsyncIO,
) -> list[ItemType | None]: ) -> list[ItemType | None]:
"""Apply a generic transform function to each row. Any errors will be reported and thrown.""" """Apply a generic transform function to each row. Any errors will be reported and thrown."""
callbacks = callbacks or NoopWorkflowCallbacks()
match async_type: match async_type:
case AsyncType.AsyncIO: case AsyncType.AsyncIO:
return await derive_from_rows_asyncio( return await derive_from_rows_asyncio(

View File

@ -26,9 +26,10 @@ async def run_workflow(
"""All the steps to create the base entity graph.""" """All the steps to create the base entity graph."""
text_units = await load_table_from_storage("text_units", context.storage) text_units = await load_table_from_storage("text_units", context.storage)
entities, relationships = extract_graph_nlp( entities, relationships = await extract_graph_nlp(
text_units, text_units,
callbacks, callbacks,
context.cache,
extraction_config=config.extract_graph_nlp, extraction_config=config.extract_graph_nlp,
pruning_config=config.prune_graph, pruning_config=config.prune_graph,
embed_config=config.embed_graph, embed_config=config.embed_graph,