* Add vector store id reference to embeddings config.
* changed structure of output config section
* added cli integration for multi index global
* added cli integration for multi index local
* added cli integration for multi index drift and basic
* finished local testing of multi-index cli
* ruff fixes
* partially refactored test code to align with new output section
* more test changes for new output structure
* semversioner
* refactored to align with new multi index config proposal
* locally tested new multi-index output proposal
* cleaned up tests to align with new structure
---------
Co-authored-by: Derek Worthen <worthend.derek@gmail.com>
* Require explicit azure auth settings when using AOI.
- Must set LanguageModel.azure_auth_type to either
"api_key" or "managed_identity" when using AOI.
* Fix smoke tests
* Use general auth_type property instead of azure_auth_type
* Remove unused error type
* Update validation
* Update validation comment
* Refactor config
- Add new ModelConfig to represent LLM settings
- Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode
- Add top level models config that is a list of available LLM ModelConfigs
- Remove LLMConfig inheritance and delete LLMConfig
- Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config
- Remove all fallbacks and hydration logic from create_graphrag_config
- This removes the automatic env variable overrides
- Support env variables within config files using Templating
- This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$"
- Update init content to initialize new config file with the ModelConfig structure
* Use dict of ModelConfig instead of list
* Add model validations and unit tests
* Fix ruff checks
* Add semversioner change
* Fix unit tests
* validate root_dir in pydantic model
* Rename ModelConfig to LanguageModelConfig
* Rename ModelConfigMissingError to LanguageModelConfigMissingError
* Add validationg for unexpected API keys
* Allow skipping pydantic validation for testing/mocking purposes.
* Add default lm configs to verb tests
* smoke test
* remove config from flows to fix llm arg mapping
* Fix embedding llm arg mapping
* Remove timestamp from smoke test outputs
* Remove unused "subworkflows" smoke test properties
* Add models to smoke test configs
* Update smoke test output path
* Send logs to logs folder
* Fix output path
* Fix csv test file pattern
* Update placeholder
* Format
* Instantiate default model configs
* Fix unit tests for config defaults
* Fix migration notebook
* Remove create_pipeline_config
* Remove several unused config models
* Remove indexing embedding and input configs
* Move embeddings function to config
* Remove skip_workflows
* Remove skip embeddings in favor of explicit naming
* fix unit test spelling mistake
* self.models[model_id] is already a language model. Remove redundant casting.
* update validation errors to instruct users to rerun graphrag init
* instantiate LanguageModelConfigs with validation
* skip validation in unit tests
* update verb tests to use default model settings instead of skipping validation
* test using llm settings
* cleanup verb tests
* remove unsafe default model config
* remove the ability to skip pydantic validation
* remove None union types when default values are set
* move vector_store from embeddings to top level of config and delete resolve_paths
* update vector store settings
* fix vector store and smoke tests
* fix serializing vector_store settings
* fix vector_store usage
* fix vector_store type
* support cli overrides for loading graphrag config
* rename storage to output
* Add --force flag to init
* Remove run_id and resume, fix Drift config assignment
* Ruff
---------
Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
Co-authored-by: Alonso Guevara <alonsog@microsoft.com>