# Copyright (c) 2024 Microsoft Corporation. # Licensed under the MIT License from graphrag.config.create_graphrag_config import create_graphrag_config from graphrag.index.workflows.extract_graph_nlp import ( run_workflow, ) from graphrag.utils.storage import load_table_from_storage from .util import ( DEFAULT_MODEL_CONFIG, create_test_context, ) async def test_extract_graph_nlp(): context = await create_test_context( storage=["text_units"], ) config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG}) await run_workflow(config, context) nodes_actual = await load_table_from_storage("entities", context.output_storage) edges_actual = await load_table_from_storage( "relationships", context.output_storage ) # this will be the raw count of entities and edges with no pruning # with NLP it is deterministic, so we can assert exact row counts assert len(nodes_actual) == 1148 assert len(nodes_actual.columns) == 5 assert len(edges_actual) == 29445 assert len(edges_actual.columns) == 5