# Copyright (c) 2024 Microsoft Corporation. # Licensed under the MIT License import networkx as nx import pytest from graphrag.config.enums import LLMType from graphrag.index.run.utils import create_run_context from graphrag.index.workflows.v1.create_base_entity_graph import ( build_steps, workflow_name, ) from .util import ( get_config_for_workflow, get_workflow_output, load_expected, load_input_tables, ) MOCK_LLM_ENTITY_RESPONSES = [ """ ("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company) ## ("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A) ## ("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A) ## ("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2) ## ("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1)) """.strip() ] MOCK_LLM_ENTITY_CONFIG = { "type": LLMType.StaticResponse, "responses": MOCK_LLM_ENTITY_RESPONSES, } MOCK_LLM_SUMMARIZATION_RESPONSES = [ """ This is a MOCK response for the LLM. It is summarized! """.strip() ] MOCK_LLM_SUMMARIZATION_CONFIG = { "type": LLMType.StaticResponse, "responses": MOCK_LLM_SUMMARIZATION_RESPONSES, } async def test_create_base_entity_graph(): input_tables = load_input_tables([ "workflow:create_base_text_units", ]) expected = load_expected(workflow_name) context = create_run_context(None, None, None) await context.runtime_storage.set( "base_text_units", input_tables["workflow:create_base_text_units"] ) config = get_config_for_workflow(workflow_name) config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG config["summarize_descriptions"]["strategy"]["llm"] = MOCK_LLM_SUMMARIZATION_CONFIG steps = build_steps(config) actual = await get_workflow_output( input_tables, { "steps": steps, }, context=context, ) assert len(actual.columns) == len( expected.columns ), "Graph dataframe columns differ" # let's parse a sample of the raw graphml actual_graphml_0 = actual["clustered_graph"][:1][0] actual_graph_0 = nx.parse_graphml(actual_graphml_0) assert actual_graph_0.number_of_nodes() == 3 assert actual_graph_0.number_of_edges() == 2 # TODO: with the combined verb we can't force summarization # this is because the mock responses always result in a single description, which is returned verbatim rather than summarized # we need to update the mocking to provide somewhat unique graphs so a true merge happens # the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below nodes = list(actual_graph_0.nodes(data=True)) assert nodes[0][1]["description"] == "Company_A is a test company" assert len(context.storage.keys()) == 0, "Storage should be empty" async def test_create_base_entity_graph_with_embeddings(): input_tables = load_input_tables([ "workflow:create_base_text_units", ]) expected = load_expected(workflow_name) context = create_run_context(None, None, None) await context.runtime_storage.set( "base_text_units", input_tables["workflow:create_base_text_units"] ) config = get_config_for_workflow(workflow_name) config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG config["summarize_descriptions"]["strategy"]["llm"] = MOCK_LLM_SUMMARIZATION_CONFIG config["embed_graph_enabled"] = True steps = build_steps(config) actual = await get_workflow_output( input_tables, { "steps": steps, }, context=context, ) assert ( len(actual.columns) == len(expected.columns) + 1 ), "Graph dataframe missing embedding column" assert "embeddings" in actual.columns, "Graph dataframe missing embedding column" async def test_create_base_entity_graph_with_snapshots(): input_tables = load_input_tables([ "workflow:create_base_text_units", ]) context = create_run_context(None, None, None) await context.runtime_storage.set( "base_text_units", input_tables["workflow:create_base_text_units"] ) config = get_config_for_workflow(workflow_name) config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG config["summarize_descriptions"]["strategy"]["llm"] = MOCK_LLM_SUMMARIZATION_CONFIG config["raw_entity_snapshot"] = True config["graphml_snapshot"] = True config["embed_graph_enabled"] = True # need this on in order to see the snapshot steps = build_steps(config) await get_workflow_output( input_tables, { "steps": steps, }, context=context, ) assert context.storage.keys() == [ "raw_extracted_entities.json", "merged_graph.graphml", "summarized_graph.graphml", "clustered_graph.graphml", "embedded_graph.graphml", ], "Graph snapshot keys differ" async def test_create_base_entity_graph_missing_llm_throws(): input_tables = load_input_tables([ "workflow:create_base_text_units", ]) context = create_run_context(None, None, None) await context.runtime_storage.set( "base_text_units", input_tables["workflow:create_base_text_units"] ) config = get_config_for_workflow(workflow_name) config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG del config["summarize_descriptions"]["strategy"]["llm"] steps = build_steps(config) with pytest.raises(ValueError): # noqa PT011 await get_workflow_output( input_tables, { "steps": steps, }, context=context, )