# Copyright (c) 2024 Microsoft Corporation. # Licensed under the MIT License import pytest from graphrag.callbacks.noop_verb_callbacks import NoopVerbCallbacks from graphrag.config.create_graphrag_config import create_graphrag_config from graphrag.config.enums import LLMType from graphrag.index.workflows.extract_graph import ( run_workflow, ) from graphrag.utils.storage import load_table_from_storage from .util import ( create_test_context, load_test_table, ) MOCK_LLM_ENTITY_RESPONSES = [ """ ("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company) ## ("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A) ## ("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A) ## ("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2) ## ("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1)) """.strip() ] MOCK_LLM_ENTITY_CONFIG = { "type": LLMType.StaticResponse, "responses": MOCK_LLM_ENTITY_RESPONSES, } MOCK_LLM_SUMMARIZATION_RESPONSES = [ """ This is a MOCK response for the LLM. It is summarized! """.strip() ] MOCK_LLM_SUMMARIZATION_CONFIG = { "type": LLMType.StaticResponse, "responses": MOCK_LLM_SUMMARIZATION_RESPONSES, } async def test_extract_graph(): nodes_expected = load_test_table("base_entity_nodes") edges_expected = load_test_table("base_relationship_edges") context = await create_test_context( storage=["create_base_text_units"], ) config = create_graphrag_config() config.entity_extraction.strategy = { "type": "graph_intelligence", "llm": MOCK_LLM_ENTITY_CONFIG, } config.summarize_descriptions.strategy = { "type": "graph_intelligence", "llm": MOCK_LLM_SUMMARIZATION_CONFIG, } await run_workflow( config, context, NoopVerbCallbacks(), ) # graph construction creates transient tables for nodes, edges, and communities nodes_actual = await load_table_from_storage("base_entity_nodes", context.storage) edges_actual = await load_table_from_storage( "base_relationship_edges", context.storage ) assert len(nodes_actual.columns) == len(nodes_expected.columns), ( "Nodes dataframe columns differ" ) assert len(edges_actual.columns) == len(edges_expected.columns), ( "Edges dataframe columns differ" ) # TODO: with the combined verb we can't force summarization # this is because the mock responses always result in a single description, which is returned verbatim rather than summarized # we need to update the mocking to provide somewhat unique graphs so a true merge happens # the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below assert nodes_actual["description"].to_numpy()[0] == "Company_A is a test company" async def test_extract_graph_missing_llm_throws(): context = await create_test_context( storage=["create_base_text_units"], ) config = create_graphrag_config() config.entity_extraction.strategy = { "type": "graph_intelligence", "llm": MOCK_LLM_ENTITY_CONFIG, } config.summarize_descriptions.strategy = { "type": "graph_intelligence", } with pytest.raises(ValueError): # noqa PT011 await run_workflow( config, context, NoopVerbCallbacks(), )