{ "cells": [ { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "# Copyright (c) 2024 Microsoft Corporation.\n", "# Licensed under the MIT License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Index Migration (pre-v1 to v1)\n", "\n", "This notebook is used to maintain data model parity with older indexes for version 1.0 of GraphRAG. If you have a pre-1.0 index and need to migrate without re-running the entire pipeline, you can use this notebook to only update the pieces necessary for alignment.\n", "\n", "NOTE: we recommend regenerating your settings.yml with the latest version of GraphRAG using `graphrag init`. Copy your LLM settings into it before running this notebook. This ensures your config is aligned with the latest version for the migration. This also ensures that you have default vector store config, which is now required or indexing will fail.\n", "\n", "WARNING: This will overwrite your parquet files, you may want to make a backup!" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "# This is the directory that has your settings.yaml\n", "# NOTE: much older indexes may have been output with a timestamped directory\n", "# if this is the case, you will need to make sure the storage.base_dir in settings.yaml points to it correctly\n", "PROJECT_DIRECTORY = \" -1].loc[:, [\"community\", \"parent\"]]" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "from uuid import uuid4\n", "\n", "from graphrag.utils.storage import load_table_from_storage, write_table_to_storage\n", "\n", "# First we'll go through any parquet files that had model changes and update them\n", "# The new data model may have removed excess columns as well, but we will only make the minimal changes required for compatibility\n", "\n", "final_documents = await load_table_from_storage(\"create_final_documents\", storage)\n", "final_text_units = await load_table_from_storage(\"create_final_text_units\", storage)\n", "final_entities = await load_table_from_storage(\"create_final_entities\", storage)\n", "final_nodes = await load_table_from_storage(\"create_final_nodes\", storage)\n", "final_relationships = await load_table_from_storage(\n", " \"create_final_relationships\", storage\n", ")\n", "final_communities = await load_table_from_storage(\"create_final_communities\", storage)\n", "final_community_reports = await load_table_from_storage(\n", " \"create_final_community_reports\", storage\n", ")\n", "\n", "\n", "# Documents renames raw_content for consistency\n", "if \"raw_content\" in final_documents.columns:\n", " final_documents.rename(columns={\"raw_content\": \"text\"}, inplace=True)\n", "final_documents[\"human_readable_id\"] = final_documents.index + 1\n", "\n", "# Text units just get a human_readable_id or consistency\n", "final_text_units[\"human_readable_id\"] = final_text_units.index + 1\n", "\n", "# We renamed \"name\" to \"title\" for consistency with the rest of the tables\n", "if \"name\" in final_entities.columns:\n", " final_entities.rename(columns={\"name\": \"title\"}, inplace=True)\n", "remove_columns(\n", " final_entities, [\"name_embedding\", \"graph_embedding\", \"description_embedding\"]\n", ")\n", "\n", "# Final nodes uses community for joins, which is now an int everywhere\n", "final_nodes[\"community\"] = final_nodes[\"community\"].fillna(-1)\n", "final_nodes[\"community\"] = final_nodes[\"community\"].astype(int)\n", "remove_columns(\n", " final_nodes,\n", " [\n", " \"type\",\n", " \"description\",\n", " \"source_id\",\n", " \"graph_embedding\",\n", " \"entity_type\",\n", " \"top_level_node_id\",\n", " \"size\",\n", " ],\n", ")\n", "\n", "# Relationships renames \"rank\" to \"combined_degree\" to be clear what the default ranking is\n", "if \"rank\" in final_relationships.columns:\n", " final_relationships.rename(columns={\"rank\": \"combined_degree\"}, inplace=True)\n", "\n", "\n", "# Compute the parents for each community, to add to communities and reports\n", "parent_df = get_community_parent(final_nodes)\n", "\n", "# Communities previously used the \"id\" field for the Leiden id, but we've moved this to the community field and use a uuid for id like the others\n", "if \"community\" not in final_communities.columns:\n", " final_communities[\"community\"] = final_communities[\"id\"].astype(int)\n", " final_communities[\"human_readable_id\"] = final_communities[\"community\"]\n", " final_communities[\"id\"] = [str(uuid4()) for _ in range(len(final_communities))]\n", "if \"parent\" not in final_communities.columns:\n", " final_communities = final_communities.merge(parent_df, on=\"community\", how=\"left\")\n", "if \"entity_ids\" not in final_communities.columns:\n", " node_mapping = (\n", " final_nodes.loc[:, [\"community\", \"id\"]]\n", " .groupby(\"community\")\n", " .agg(entity_ids=(\"id\", list))\n", " )\n", " final_communities = final_communities.merge(\n", " node_mapping, on=\"community\", how=\"left\"\n", " )\n", "remove_columns(final_communities, [\"raw_community\"])\n", "\n", "# We need int for community and the human_readable_id copy for consistency\n", "final_community_reports[\"community\"] = final_community_reports[\"community\"].astype(int)\n", "final_community_reports[\"human_readable_id\"] = final_community_reports[\"community\"]\n", "if \"parent\" not in final_community_reports.columns:\n", " final_community_reports = final_community_reports.merge(\n", " parent_df, on=\"community\", how=\"left\"\n", " )\n", "\n", "await write_table_to_storage(final_documents, \"create_final_documents\", storage)\n", "await write_table_to_storage(final_text_units, \"create_final_text_units\", storage)\n", "await write_table_to_storage(final_entities, \"create_final_entities\", storage)\n", "await write_table_to_storage(final_nodes, \"create_final_nodes\", storage)\n", "await write_table_to_storage(final_relationships, \"create_final_relationships\", storage)\n", "await write_table_to_storage(final_communities, \"create_final_communities\", storage)\n", "await write_table_to_storage(\n", " final_community_reports, \"create_final_community_reports\", storage\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from graphrag.cache.factory import CacheFactory\n", "from graphrag.callbacks.noop_workflow_callbacks import NoopWorkflowCallbacks\n", "from graphrag.config.embeddings import get_embedded_fields, get_embedding_settings\n", "from graphrag.index.flows.generate_text_embeddings import generate_text_embeddings\n", "\n", "# We only need to re-run the embeddings workflow, to ensure that embeddings for all required search fields are in place\n", "# We'll construct the context and run this function flow directly to avoid everything else\n", "\n", "\n", "embedded_fields = get_embedded_fields(config)\n", "text_embed = get_embedding_settings(config)\n", "callbacks = NoopWorkflowCallbacks()\n", "cache_config = config.cache.model_dump() # type: ignore\n", "cache = CacheFactory().create_cache(\n", " cache_type=cache_config[\"type\"], # type: ignore\n", " root_dir=PROJECT_DIRECTORY,\n", " kwargs=cache_config,\n", ")\n", "\n", "await generate_text_embeddings(\n", " final_documents=None,\n", " final_relationships=None,\n", " final_text_units=final_text_units,\n", " final_entities=final_entities,\n", " final_community_reports=final_community_reports,\n", " callbacks=callbacks,\n", " cache=cache,\n", " storage=storage,\n", " text_embed_config=text_embed,\n", " embedded_fields=embedded_fields,\n", " snapshot_embeddings_enabled=False,\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }