# Copyright (c) 2024 Microsoft Corporation. # Licensed under the MIT License import networkx as nx from graphrag.index.storage.memory_pipeline_storage import MemoryPipelineStorage from graphrag.index.workflows.v1.create_base_extracted_entities import ( build_steps, workflow_name, ) from .util import ( get_config_for_workflow, get_workflow_output, load_expected, load_input_tables, ) async def test_create_base_extracted_entities(): input_tables = load_input_tables(["workflow:create_base_text_units"]) expected = load_expected(workflow_name) storage = MemoryPipelineStorage() config = get_config_for_workflow(workflow_name) del config["entity_extract"]["strategy"]["llm"] steps = build_steps(config) actual = await get_workflow_output( input_tables, { "steps": steps, }, storage=storage, ) # let's parse a sample of the raw graphml actual_graphml_0 = actual["entity_graph"][:1][0] actual_graph_0 = nx.parse_graphml(actual_graphml_0) assert actual_graph_0.number_of_nodes() == 3 assert actual_graph_0.number_of_edges() == 2 assert actual.columns == expected.columns assert len(storage.keys()) == 0, "Storage should be empty" async def test_create_base_extracted_entities_with_snapshots(): input_tables = load_input_tables(["workflow:create_base_text_units"]) expected = load_expected(workflow_name) storage = MemoryPipelineStorage() config = get_config_for_workflow(workflow_name) del config["entity_extract"]["strategy"]["llm"] config["raw_entity_snapshot"] = True config["graphml_snapshot"] = True steps = build_steps(config) actual = await get_workflow_output( input_tables, { "steps": steps, }, storage=storage, ) print(storage.keys()) assert actual.columns == expected.columns assert storage.keys() == ["raw_extracted_entities.json", "merged_graph.graphml"]