graphrag/tests/verbs/test_extract_graph.py
Nathan Evans 1df89727c3
Pipeline registration (#1940)
* Move covariate run conditional

* All pipeline registration

* Fix method name construction

* Rename context storage -> output_storage

* Rename OutputConfig as generic StorageConfig

* Reuse Storage model under InputConfig

* Move input storage creation out of document loading

* Move document loading into workflows

* Semver

* Fix smoke test config for new workflows

* Fix unit tests

---------

Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-06-12 16:14:39 -07:00

79 lines
2.9 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.enums import ModelType
from graphrag.index.workflows.extract_graph import (
run_workflow,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
create_test_context,
)
MOCK_LLM_ENTITY_RESPONSES = [
"""
("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company)
##
("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A)
##
("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A)
##
("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2)
##
("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1))
""".strip()
]
MOCK_LLM_SUMMARIZATION_RESPONSES = [
"""
This is a MOCK response for the LLM. It is summarized!
""".strip()
]
async def test_extract_graph():
context = await create_test_context(
storage=["text_units"],
)
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
extract_claims_llm_settings = config.get_language_model_config(
config.extract_graph.model_id
).model_dump()
extract_claims_llm_settings["type"] = ModelType.MockChat
extract_claims_llm_settings["responses"] = MOCK_LLM_ENTITY_RESPONSES
config.extract_graph.strategy = {
"type": "graph_intelligence",
"llm": extract_claims_llm_settings,
}
summarize_llm_settings = config.get_language_model_config(
config.summarize_descriptions.model_id
).model_dump()
summarize_llm_settings["type"] = ModelType.MockChat
summarize_llm_settings["responses"] = MOCK_LLM_SUMMARIZATION_RESPONSES
config.summarize_descriptions.strategy = {
"type": "graph_intelligence",
"llm": summarize_llm_settings,
"max_input_tokens": 1000,
"max_summary_length": 100,
}
await run_workflow(config, context)
nodes_actual = await load_table_from_storage("entities", context.output_storage)
edges_actual = await load_table_from_storage(
"relationships", context.output_storage
)
assert len(nodes_actual.columns) == 5
assert len(edges_actual.columns) == 5
# TODO: with the combined verb we can't force summarization
# this is because the mock responses always result in a single description, which is returned verbatim rather than summarized
# we need to update the mocking to provide somewhat unique graphs so a true merge happens
# the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below
assert nodes_actual["description"].to_numpy()[0] == "Company_A is a test company"