graphrag/tests/verbs/test_extract_graph_nlp.py
Nathan Evans 1df89727c3
Pipeline registration (#1940)
* Move covariate run conditional

* All pipeline registration

* Fix method name construction

* Rename context storage -> output_storage

* Rename OutputConfig as generic StorageConfig

* Reuse Storage model under InputConfig

* Move input storage creation out of document loading

* Move document loading into workflows

* Semver

* Fix smoke test config for new workflows

* Fix unit tests

---------

Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-06-12 16:14:39 -07:00

36 lines
1.1 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.index.workflows.extract_graph_nlp import (
run_workflow,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
create_test_context,
)
async def test_extract_graph_nlp():
context = await create_test_context(
storage=["text_units"],
)
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
await run_workflow(config, context)
nodes_actual = await load_table_from_storage("entities", context.output_storage)
edges_actual = await load_table_from_storage(
"relationships", context.output_storage
)
# this will be the raw count of entities and edges with no pruning
# with NLP it is deterministic, so we can assert exact row counts
assert len(nodes_actual) == 1148
assert len(nodes_actual.columns) == 5
assert len(edges_actual) == 29445
assert len(edges_actual.columns) == 5