graphrag/tests/verbs/test_generate_text_embeddings.py
Nathan Evans 1df89727c3
Pipeline registration (#1940)
* Move covariate run conditional

* All pipeline registration

* Fix method name construction

* Rename context storage -> output_storage

* Rename OutputConfig as generic StorageConfig

* Reuse Storage model under InputConfig

* Move input storage creation out of document loading

* Move document loading into workflows

* Semver

* Fix smoke test config for new workflows

* Fix unit tests

---------

Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-06-12 16:14:39 -07:00

69 lines
2.2 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.embeddings import (
all_embeddings,
)
from graphrag.config.enums import ModelType
from graphrag.index.operations.embed_text.embed_text import TextEmbedStrategyType
from graphrag.index.workflows.generate_text_embeddings import (
run_workflow,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
create_test_context,
)
async def test_generate_text_embeddings():
context = await create_test_context(
storage=[
"documents",
"relationships",
"text_units",
"entities",
"community_reports",
]
)
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
llm_settings = config.get_language_model_config(
config.embed_text.model_id
).model_dump()
llm_settings["type"] = ModelType.MockEmbedding
config.embed_text.strategy = {
"type": TextEmbedStrategyType.openai,
"llm": llm_settings,
}
config.embed_text.names = list(all_embeddings)
config.snapshots.embeddings = True
await run_workflow(config, context)
parquet_files = context.output_storage.keys()
for field in all_embeddings:
assert f"embeddings.{field}.parquet" in parquet_files
# entity description should always be here, let's assert its format
entity_description_embeddings = await load_table_from_storage(
"embeddings.entity.description", context.output_storage
)
assert len(entity_description_embeddings.columns) == 2
assert "id" in entity_description_embeddings.columns
assert "embedding" in entity_description_embeddings.columns
# every other embedding is optional but we've turned them all on, so check a random one
document_text_embeddings = await load_table_from_storage(
"embeddings.document.text", context.output_storage
)
assert len(document_text_embeddings.columns) == 2
assert "id" in document_text_embeddings.columns
assert "embedding" in document_text_embeddings.columns