mirror of
https://github.com/microsoft/graphrag.git
synced 2025-07-04 07:26:30 +00:00
157 lines
4.3 KiB
Plaintext
157 lines
4.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## SCRIPT TO EXTRACT EXISTING TEXT EMBEDDINGS INTO A NEW WORKFLOW WITH NEW LOOKUP TABLES"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Copyright (c) 2024 Microsoft Corporation.\n",
|
|
"# Licensed under the MIT License."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 74,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"\n",
|
|
"sys.path.insert(1, \"../../\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 75,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import re\n",
|
|
"from pathlib import Path\n",
|
|
"\n",
|
|
"import pandas as pd"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### SET VALUES FOR THE INDEX FOLDER TO BE EXTRACTED"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 76,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# set local folder where the index data is located\n",
|
|
"LOCAL_ROOT = \"<local-path-to-data-folder>\"\n",
|
|
"\n",
|
|
"# value to decide if the original file should maintain or remove the embedding column\n",
|
|
"REMOVE_ORIGINAL_EMBEDDING_COLUMN_IN_SOURCE_FILE = True\n",
|
|
"\n",
|
|
"# identifier field\n",
|
|
"STANDARD_IDENTIFIER_FIELD = \"id\"\n",
|
|
"\n",
|
|
"# new embedding field name\n",
|
|
"NEW_STANDARD_EMBEDDING_FIELD = \"embedding\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### GENERIC METHOD TO EXTRACT EMBEDDING COLUMNS FROM A FILE AND CREATE A NEW EMBEDDINGS SPECIFIC FILE"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 77,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def extract_text_embedding_from_table(\n",
|
|
" input_path: str, original_embedding_field: str, embeddings_parquet_output_field: str\n",
|
|
"):\n",
|
|
" \"\"\"Migrate table for embeddings.\"\"\"\n",
|
|
" original_df = pd.read_parquet(input_path)\n",
|
|
" no_embeddings_df = original_df.drop(columns=[original_embedding_field])\n",
|
|
"\n",
|
|
" embeddings_df = original_df[[STANDARD_IDENTIFIER_FIELD, original_embedding_field]]\n",
|
|
" embeddings_df = embeddings_df.rename(\n",
|
|
" columns={original_embedding_field: NEW_STANDARD_EMBEDDING_FIELD}\n",
|
|
" ) # type: ignore\n",
|
|
" embeddings_df.to_parquet(embeddings_parquet_output_field, index=False)\n",
|
|
"\n",
|
|
" if REMOVE_ORIGINAL_EMBEDDING_COLUMN_IN_SOURCE_FILE is True:\n",
|
|
" no_embeddings_df.to_parquet(input_path, index=False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### ITERATES PER ALL PARQUET FILES INSIDE THE FOLDER AND DETECTS ALL EMBEDDINGS COLUMNS IN ALL OF THEM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# READ ENTIRE DATA FOLDER LOOKING FOR EMBEDDING COLUMNS IN EACH FILE\n",
|
|
"folder_path = Path(LOCAL_ROOT)\n",
|
|
"pattern = r\"^(.*?)(_embedding)$\"\n",
|
|
"\n",
|
|
"for file_path in folder_path.iterdir():\n",
|
|
" if file_path.is_file() and file_path.suffix == \".parquet\":\n",
|
|
" original_df = pd.read_parquet(str(file_path))\n",
|
|
" columns = original_df.columns.tolist()\n",
|
|
"\n",
|
|
" for column in columns:\n",
|
|
" match = re.match(pattern, column)\n",
|
|
" if match:\n",
|
|
" print(f\"Reading {file_path}\")\n",
|
|
" filename_without_extension = str(file_path.with_suffix(\"\").as_posix())\n",
|
|
" embedding_file_name = (\n",
|
|
" f\"{filename_without_extension}_{column}s{file_path.suffix}\"\n",
|
|
" )\n",
|
|
" extract_text_embedding_from_table(\n",
|
|
" str(file_path), column, embedding_file_name\n",
|
|
" )"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": ".venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|