graphrag/tests/verbs/test_create_final_covariates.py
Derek Worthen c644338bae
Refactor config (#1593)
* Refactor config

- Add new ModelConfig to represent LLM settings
    - Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode
- Add top level models config that is a list of available LLM ModelConfigs
- Remove LLMConfig inheritance and delete LLMConfig
    - Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config
- Remove all fallbacks and hydration logic from create_graphrag_config
    - This removes the automatic env variable overrides
- Support env variables within config files using Templating
    - This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$"
- Update init content to initialize new config file with the ModelConfig structure

* Use dict of ModelConfig instead of list

* Add model validations and unit tests

* Fix ruff checks

* Add semversioner change

* Fix unit tests

* validate root_dir in pydantic model

* Rename ModelConfig to LanguageModelConfig

* Rename ModelConfigMissingError to LanguageModelConfigMissingError

* Add validationg for unexpected API keys

* Allow skipping pydantic validation for testing/mocking purposes.

* Add default lm configs to verb tests

* smoke test

* remove config from flows to fix llm arg mapping

* Fix embedding llm arg mapping

* Remove timestamp from smoke test outputs

* Remove unused "subworkflows" smoke test properties

* Add models to smoke test configs

* Update smoke test output path

* Send logs to logs folder

* Fix output path

* Fix csv test file pattern

* Update placeholder

* Format

* Instantiate default model configs

* Fix unit tests for config defaults

* Fix migration notebook

* Remove create_pipeline_config

* Remove several unused config models

* Remove indexing embedding and input configs

* Move embeddings function to config

* Remove skip_workflows

* Remove skip embeddings in favor of explicit naming

* fix unit test spelling mistake

* self.models[model_id] is already a language model. Remove redundant casting.

* update validation errors to instruct users to rerun graphrag init

* instantiate LanguageModelConfigs with validation

* skip validation in unit tests

* update verb tests to use default model settings instead of skipping validation

* test using llm settings

* cleanup verb tests

* remove unsafe default model config

* remove the ability to skip pydantic validation

* remove None union types when default values are set

* move vector_store from embeddings to top level of config and delete resolve_paths

* update vector store settings

* fix vector store and smoke tests

* fix serializing vector_store settings

* fix vector_store usage

* fix vector_store type

* support cli overrides for loading graphrag config

* rename storage to output

* Add --force flag to init

* Remove run_id and resume, fix Drift config assignment

* Ruff

---------

Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-01-21 17:52:06 -06:00

83 lines
3.4 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from pandas.testing import assert_series_equal
from graphrag.callbacks.noop_workflow_callbacks import NoopWorkflowCallbacks
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.enums import LLMType
from graphrag.index.workflows.create_final_covariates import (
run_workflow,
workflow_name,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
create_test_context,
load_test_table,
)
MOCK_LLM_RESPONSES = [
"""
(COMPANY A<|>GOVERNMENT AGENCY B<|>ANTI-COMPETITIVE PRACTICES<|>TRUE<|>2022-01-10T00:00:00<|>2022-01-10T00:00:00<|>Company A was found to engage in anti-competitive practices because it was fined for bid rigging in multiple public tenders published by Government Agency B according to an article published on 2022/01/10<|>According to an article published on 2022/01/10, Company A was fined for bid rigging while participating in multiple public tenders published by Government Agency B.)
""".strip()
]
async def test_create_final_covariates():
input = load_test_table("create_base_text_units")
expected = load_test_table(workflow_name)
context = await create_test_context(
storage=["create_base_text_units"],
)
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
llm_settings = config.get_language_model_config(
config.claim_extraction.model_id
).model_dump()
llm_settings["type"] = LLMType.StaticResponse
llm_settings["responses"] = MOCK_LLM_RESPONSES
config.claim_extraction.strategy = {
"type": "graph_intelligence",
"llm": llm_settings,
"claim_description": "description",
}
await run_workflow(
config,
context,
NoopWorkflowCallbacks(),
)
actual = await load_table_from_storage(workflow_name, context.storage)
assert len(actual.columns) == len(expected.columns)
# our mock only returns one covariate per text unit, so that's a 1:1 mapping versus the LLM-extracted content in the test data
assert len(actual) == len(input)
# assert all of the columns that covariates copied from the input
assert_series_equal(actual["text_unit_id"], input["id"], check_names=False)
# make sure the human ids are incrementing
assert actual["human_readable_id"][0] == 1
assert actual["human_readable_id"][1] == 2
# check that the mock data is parsed and inserted into the correct columns
assert actual["covariate_type"][0] == "claim"
assert actual["subject_id"][0] == "COMPANY A"
assert actual["object_id"][0] == "GOVERNMENT AGENCY B"
assert actual["type"][0] == "ANTI-COMPETITIVE PRACTICES"
assert actual["status"][0] == "TRUE"
assert actual["start_date"][0] == "2022-01-10T00:00:00"
assert actual["end_date"][0] == "2022-01-10T00:00:00"
assert (
actual["description"][0]
== "Company A was found to engage in anti-competitive practices because it was fined for bid rigging in multiple public tenders published by Government Agency B according to an article published on 2022/01/10"
)
assert (
actual["source_text"][0]
== "According to an article published on 2022/01/10, Company A was fined for bid rigging while participating in multiple public tenders published by Government Agency B."
)