mirror of
https://github.com/microsoft/graphrag.git
synced 2025-11-08 13:54:58 +00:00
* Refactor config
- Add new ModelConfig to represent LLM settings
- Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode
- Add top level models config that is a list of available LLM ModelConfigs
- Remove LLMConfig inheritance and delete LLMConfig
- Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config
- Remove all fallbacks and hydration logic from create_graphrag_config
- This removes the automatic env variable overrides
- Support env variables within config files using Templating
- This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$"
- Update init content to initialize new config file with the ModelConfig structure
* Use dict of ModelConfig instead of list
* Add model validations and unit tests
* Fix ruff checks
* Add semversioner change
* Fix unit tests
* validate root_dir in pydantic model
* Rename ModelConfig to LanguageModelConfig
* Rename ModelConfigMissingError to LanguageModelConfigMissingError
* Add validationg for unexpected API keys
* Allow skipping pydantic validation for testing/mocking purposes.
* Add default lm configs to verb tests
* smoke test
* remove config from flows to fix llm arg mapping
* Fix embedding llm arg mapping
* Remove timestamp from smoke test outputs
* Remove unused "subworkflows" smoke test properties
* Add models to smoke test configs
* Update smoke test output path
* Send logs to logs folder
* Fix output path
* Fix csv test file pattern
* Update placeholder
* Format
* Instantiate default model configs
* Fix unit tests for config defaults
* Fix migration notebook
* Remove create_pipeline_config
* Remove several unused config models
* Remove indexing embedding and input configs
* Move embeddings function to config
* Remove skip_workflows
* Remove skip embeddings in favor of explicit naming
* fix unit test spelling mistake
* self.models[model_id] is already a language model. Remove redundant casting.
* update validation errors to instruct users to rerun graphrag init
* instantiate LanguageModelConfigs with validation
* skip validation in unit tests
* update verb tests to use default model settings instead of skipping validation
* test using llm settings
* cleanup verb tests
* remove unsafe default model config
* remove the ability to skip pydantic validation
* remove None union types when default values are set
* move vector_store from embeddings to top level of config and delete resolve_paths
* update vector store settings
* fix vector store and smoke tests
* fix serializing vector_store settings
* fix vector_store usage
* fix vector_store type
* support cli overrides for loading graphrag config
* rename storage to output
* Add --force flag to init
* Remove run_id and resume, fix Drift config assignment
* Ruff
---------
Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
92 lines
3.4 KiB
Python
92 lines
3.4 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
|
|
from graphrag.callbacks.noop_workflow_callbacks import NoopWorkflowCallbacks
|
|
from graphrag.config.create_graphrag_config import create_graphrag_config
|
|
from graphrag.config.enums import LLMType
|
|
from graphrag.index.workflows.extract_graph import (
|
|
run_workflow,
|
|
)
|
|
from graphrag.utils.storage import load_table_from_storage
|
|
|
|
from .util import (
|
|
DEFAULT_MODEL_CONFIG,
|
|
create_test_context,
|
|
load_test_table,
|
|
)
|
|
|
|
MOCK_LLM_ENTITY_RESPONSES = [
|
|
"""
|
|
("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company)
|
|
##
|
|
("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A)
|
|
##
|
|
("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A)
|
|
##
|
|
("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2)
|
|
##
|
|
("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1))
|
|
""".strip()
|
|
]
|
|
|
|
MOCK_LLM_SUMMARIZATION_RESPONSES = [
|
|
"""
|
|
This is a MOCK response for the LLM. It is summarized!
|
|
""".strip()
|
|
]
|
|
|
|
|
|
async def test_extract_graph():
|
|
nodes_expected = load_test_table("base_entity_nodes")
|
|
edges_expected = load_test_table("base_relationship_edges")
|
|
|
|
context = await create_test_context(
|
|
storage=["create_base_text_units"],
|
|
)
|
|
|
|
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
|
|
claim_extraction_llm_settings = config.get_language_model_config(
|
|
config.entity_extraction.model_id
|
|
).model_dump()
|
|
claim_extraction_llm_settings["type"] = LLMType.StaticResponse
|
|
claim_extraction_llm_settings["responses"] = MOCK_LLM_ENTITY_RESPONSES
|
|
config.entity_extraction.strategy = {
|
|
"type": "graph_intelligence",
|
|
"llm": claim_extraction_llm_settings,
|
|
}
|
|
summarize_llm_settings = config.get_language_model_config(
|
|
config.summarize_descriptions.model_id
|
|
).model_dump()
|
|
summarize_llm_settings["type"] = LLMType.StaticResponse
|
|
summarize_llm_settings["responses"] = MOCK_LLM_SUMMARIZATION_RESPONSES
|
|
config.summarize_descriptions.strategy = {
|
|
"type": "graph_intelligence",
|
|
"llm": summarize_llm_settings,
|
|
}
|
|
|
|
await run_workflow(
|
|
config,
|
|
context,
|
|
NoopWorkflowCallbacks(),
|
|
)
|
|
|
|
# graph construction creates transient tables for nodes, edges, and communities
|
|
nodes_actual = await load_table_from_storage("base_entity_nodes", context.storage)
|
|
edges_actual = await load_table_from_storage(
|
|
"base_relationship_edges", context.storage
|
|
)
|
|
|
|
assert len(nodes_actual.columns) == len(nodes_expected.columns), (
|
|
"Nodes dataframe columns differ"
|
|
)
|
|
|
|
assert len(edges_actual.columns) == len(edges_expected.columns), (
|
|
"Edges dataframe columns differ"
|
|
)
|
|
|
|
# TODO: with the combined verb we can't force summarization
|
|
# this is because the mock responses always result in a single description, which is returned verbatim rather than summarized
|
|
# we need to update the mocking to provide somewhat unique graphs so a true merge happens
|
|
# the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below
|
|
assert nodes_actual["description"].to_numpy()[0] == "Company_A is a test company"
|