graphrag/tests/unit/query/context_builder/test_entity_extraction.py
Alonso Guevara e0d233fe10
Feat/llm provider query (#1735)
* Add ModelProvider to Query package.

* Spellcheck + others

* Semver

* Fix tests

* Format

* Fix Pyright

* Fix tests

* Fix for smoke tests
2025-02-24 18:35:51 -06:00

188 lines
5.6 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from typing import Any
from graphrag.data_model.entity import Entity
from graphrag.data_model.types import TextEmbedder
from graphrag.language_model.manager import ModelManager
from graphrag.query.context_builder.entity_extraction import (
EntityVectorStoreKey,
map_query_to_entities,
)
from graphrag.vector_stores.base import (
BaseVectorStore,
VectorStoreDocument,
VectorStoreSearchResult,
)
class MockBaseVectorStore(BaseVectorStore):
def __init__(self, documents: list[VectorStoreDocument]) -> None:
super().__init__("mock")
self.documents = documents
def connect(self, **kwargs: Any) -> None:
raise NotImplementedError
def load_documents(
self, documents: list[VectorStoreDocument], overwrite: bool = True
) -> None:
raise NotImplementedError
def similarity_search_by_vector(
self, query_embedding: list[float], k: int = 10, **kwargs: Any
) -> list[VectorStoreSearchResult]:
return [
VectorStoreSearchResult(document=document, score=1)
for document in self.documents[:k]
]
def similarity_search_by_text(
self, text: str, text_embedder: TextEmbedder, k: int = 10, **kwargs: Any
) -> list[VectorStoreSearchResult]:
return sorted(
[
VectorStoreSearchResult(
document=document, score=abs(len(text) - len(document.text or ""))
)
for document in self.documents
],
key=lambda x: x.score,
)[:k]
def filter_by_id(self, include_ids: list[str] | list[int]) -> Any:
return [document for document in self.documents if document.id in include_ids]
def search_by_id(self, id: str) -> VectorStoreDocument:
result = self.documents[0]
result.id = id
return result
def test_map_query_to_entities():
entities = [
Entity(
id="2da37c7a-50a8-44d4-aa2c-fd401e19976c",
short_id="sid1",
title="t1",
rank=2,
),
Entity(
id="c4f93564-4507-4ee4-b102-98add401a965",
short_id="sid2",
title="t22",
rank=4,
),
Entity(
id="7c6f2bc9-47c9-4453-93a3-d2e174a02cd9",
short_id="sid3",
title="t333",
rank=1,
),
Entity(
id="8fd6d72a-8e9d-4183-8a97-c38bcc971c83",
short_id="sid4",
title="t4444",
rank=3,
),
]
assert map_query_to_entities(
query="t22",
text_embedding_vectorstore=MockBaseVectorStore([
VectorStoreDocument(id=entity.id, text=entity.title, vector=None)
for entity in entities
]),
text_embedder=ModelManager().get_or_create_embedding_model(
model_type="mock_embedding", name="mock"
),
all_entities_dict={entity.id: entity for entity in entities},
embedding_vectorstore_key=EntityVectorStoreKey.ID,
k=1,
oversample_scaler=1,
) == [
Entity(
id="c4f93564-4507-4ee4-b102-98add401a965",
short_id="sid2",
title="t22",
rank=4,
)
]
assert map_query_to_entities(
query="t22",
text_embedding_vectorstore=MockBaseVectorStore([
VectorStoreDocument(id=entity.title, text=entity.title, vector=None)
for entity in entities
]),
text_embedder=ModelManager().get_or_create_embedding_model(
model_type="mock_embedding", name="mock"
),
all_entities_dict={entity.id: entity for entity in entities},
embedding_vectorstore_key=EntityVectorStoreKey.TITLE,
k=1,
oversample_scaler=1,
) == [
Entity(
id="c4f93564-4507-4ee4-b102-98add401a965",
short_id="sid2",
title="t22",
rank=4,
)
]
assert map_query_to_entities(
query="",
text_embedding_vectorstore=MockBaseVectorStore([
VectorStoreDocument(id=entity.id, text=entity.title, vector=None)
for entity in entities
]),
text_embedder=ModelManager().get_or_create_embedding_model(
model_type="mock_embedding", name="mock"
),
all_entities_dict={entity.id: entity for entity in entities},
embedding_vectorstore_key=EntityVectorStoreKey.ID,
k=2,
) == [
Entity(
id="c4f93564-4507-4ee4-b102-98add401a965",
short_id="sid2",
title="t22",
rank=4,
),
Entity(
id="8fd6d72a-8e9d-4183-8a97-c38bcc971c83",
short_id="sid4",
title="t4444",
rank=3,
),
]
assert map_query_to_entities(
query="",
text_embedding_vectorstore=MockBaseVectorStore([
VectorStoreDocument(id=entity.id, text=entity.title, vector=None)
for entity in entities
]),
text_embedder=ModelManager().get_or_create_embedding_model(
model_type="mock_embedding", name="mock"
),
all_entities_dict={entity.id: entity for entity in entities},
embedding_vectorstore_key=EntityVectorStoreKey.TITLE,
k=2,
) == [
Entity(
id="c4f93564-4507-4ee4-b102-98add401a965",
short_id="sid2",
title="t22",
rank=4,
),
Entity(
id="8fd6d72a-8e9d-4183-8a97-c38bcc971c83",
short_id="sid4",
title="t4444",
rank=3,
),
]