mirror of
https://github.com/microsoft/graphrag.git
synced 2025-07-04 07:26:30 +00:00

* Add ModelProvider to Query package. * Spellcheck + others * Semver * Fix tests * Format * Fix Pyright * Fix tests * Fix for smoke tests
188 lines
5.6 KiB
Python
188 lines
5.6 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
|
|
from typing import Any
|
|
|
|
from graphrag.data_model.entity import Entity
|
|
from graphrag.data_model.types import TextEmbedder
|
|
from graphrag.language_model.manager import ModelManager
|
|
from graphrag.query.context_builder.entity_extraction import (
|
|
EntityVectorStoreKey,
|
|
map_query_to_entities,
|
|
)
|
|
from graphrag.vector_stores.base import (
|
|
BaseVectorStore,
|
|
VectorStoreDocument,
|
|
VectorStoreSearchResult,
|
|
)
|
|
|
|
|
|
class MockBaseVectorStore(BaseVectorStore):
|
|
def __init__(self, documents: list[VectorStoreDocument]) -> None:
|
|
super().__init__("mock")
|
|
self.documents = documents
|
|
|
|
def connect(self, **kwargs: Any) -> None:
|
|
raise NotImplementedError
|
|
|
|
def load_documents(
|
|
self, documents: list[VectorStoreDocument], overwrite: bool = True
|
|
) -> None:
|
|
raise NotImplementedError
|
|
|
|
def similarity_search_by_vector(
|
|
self, query_embedding: list[float], k: int = 10, **kwargs: Any
|
|
) -> list[VectorStoreSearchResult]:
|
|
return [
|
|
VectorStoreSearchResult(document=document, score=1)
|
|
for document in self.documents[:k]
|
|
]
|
|
|
|
def similarity_search_by_text(
|
|
self, text: str, text_embedder: TextEmbedder, k: int = 10, **kwargs: Any
|
|
) -> list[VectorStoreSearchResult]:
|
|
return sorted(
|
|
[
|
|
VectorStoreSearchResult(
|
|
document=document, score=abs(len(text) - len(document.text or ""))
|
|
)
|
|
for document in self.documents
|
|
],
|
|
key=lambda x: x.score,
|
|
)[:k]
|
|
|
|
def filter_by_id(self, include_ids: list[str] | list[int]) -> Any:
|
|
return [document for document in self.documents if document.id in include_ids]
|
|
|
|
def search_by_id(self, id: str) -> VectorStoreDocument:
|
|
result = self.documents[0]
|
|
result.id = id
|
|
return result
|
|
|
|
|
|
def test_map_query_to_entities():
|
|
entities = [
|
|
Entity(
|
|
id="2da37c7a-50a8-44d4-aa2c-fd401e19976c",
|
|
short_id="sid1",
|
|
title="t1",
|
|
rank=2,
|
|
),
|
|
Entity(
|
|
id="c4f93564-4507-4ee4-b102-98add401a965",
|
|
short_id="sid2",
|
|
title="t22",
|
|
rank=4,
|
|
),
|
|
Entity(
|
|
id="7c6f2bc9-47c9-4453-93a3-d2e174a02cd9",
|
|
short_id="sid3",
|
|
title="t333",
|
|
rank=1,
|
|
),
|
|
Entity(
|
|
id="8fd6d72a-8e9d-4183-8a97-c38bcc971c83",
|
|
short_id="sid4",
|
|
title="t4444",
|
|
rank=3,
|
|
),
|
|
]
|
|
|
|
assert map_query_to_entities(
|
|
query="t22",
|
|
text_embedding_vectorstore=MockBaseVectorStore([
|
|
VectorStoreDocument(id=entity.id, text=entity.title, vector=None)
|
|
for entity in entities
|
|
]),
|
|
text_embedder=ModelManager().get_or_create_embedding_model(
|
|
model_type="mock_embedding", name="mock"
|
|
),
|
|
all_entities_dict={entity.id: entity for entity in entities},
|
|
embedding_vectorstore_key=EntityVectorStoreKey.ID,
|
|
k=1,
|
|
oversample_scaler=1,
|
|
) == [
|
|
Entity(
|
|
id="c4f93564-4507-4ee4-b102-98add401a965",
|
|
short_id="sid2",
|
|
title="t22",
|
|
rank=4,
|
|
)
|
|
]
|
|
|
|
assert map_query_to_entities(
|
|
query="t22",
|
|
text_embedding_vectorstore=MockBaseVectorStore([
|
|
VectorStoreDocument(id=entity.title, text=entity.title, vector=None)
|
|
for entity in entities
|
|
]),
|
|
text_embedder=ModelManager().get_or_create_embedding_model(
|
|
model_type="mock_embedding", name="mock"
|
|
),
|
|
all_entities_dict={entity.id: entity for entity in entities},
|
|
embedding_vectorstore_key=EntityVectorStoreKey.TITLE,
|
|
k=1,
|
|
oversample_scaler=1,
|
|
) == [
|
|
Entity(
|
|
id="c4f93564-4507-4ee4-b102-98add401a965",
|
|
short_id="sid2",
|
|
title="t22",
|
|
rank=4,
|
|
)
|
|
]
|
|
|
|
assert map_query_to_entities(
|
|
query="",
|
|
text_embedding_vectorstore=MockBaseVectorStore([
|
|
VectorStoreDocument(id=entity.id, text=entity.title, vector=None)
|
|
for entity in entities
|
|
]),
|
|
text_embedder=ModelManager().get_or_create_embedding_model(
|
|
model_type="mock_embedding", name="mock"
|
|
),
|
|
all_entities_dict={entity.id: entity for entity in entities},
|
|
embedding_vectorstore_key=EntityVectorStoreKey.ID,
|
|
k=2,
|
|
) == [
|
|
Entity(
|
|
id="c4f93564-4507-4ee4-b102-98add401a965",
|
|
short_id="sid2",
|
|
title="t22",
|
|
rank=4,
|
|
),
|
|
Entity(
|
|
id="8fd6d72a-8e9d-4183-8a97-c38bcc971c83",
|
|
short_id="sid4",
|
|
title="t4444",
|
|
rank=3,
|
|
),
|
|
]
|
|
|
|
assert map_query_to_entities(
|
|
query="",
|
|
text_embedding_vectorstore=MockBaseVectorStore([
|
|
VectorStoreDocument(id=entity.id, text=entity.title, vector=None)
|
|
for entity in entities
|
|
]),
|
|
text_embedder=ModelManager().get_or_create_embedding_model(
|
|
model_type="mock_embedding", name="mock"
|
|
),
|
|
all_entities_dict={entity.id: entity for entity in entities},
|
|
embedding_vectorstore_key=EntityVectorStoreKey.TITLE,
|
|
k=2,
|
|
) == [
|
|
Entity(
|
|
id="c4f93564-4507-4ee4-b102-98add401a965",
|
|
short_id="sid2",
|
|
title="t22",
|
|
rank=4,
|
|
),
|
|
Entity(
|
|
id="8fd6d72a-8e9d-4183-8a97-c38bcc971c83",
|
|
short_id="sid4",
|
|
title="t4444",
|
|
rank=3,
|
|
),
|
|
]
|