graphrag/tests/verbs/test_create_base_text_units.py
Nathan Evans bd06d8b4f0
Context property bag ("state") (#1774)
* Add pipeline state property bag to run context

* Move state creation out of context util

* Move callbacks into PipelineRunContext

* Semver

* Rename state.json to context.json to avoid confusion with stats.json

* Expand smoke test row count

* Add util to create storage and cache
2025-02-28 09:31:48 -08:00

69 lines
2.3 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.index.workflows.create_base_text_units import run_workflow
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
compare_outputs,
create_test_context,
load_test_table,
update_document_metadata,
)
async def test_create_base_text_units():
expected = load_test_table("text_units")
context = await create_test_context()
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
await run_workflow(config, context)
actual = await load_table_from_storage("text_units", context.storage)
compare_outputs(actual, expected, columns=["text", "document_ids", "n_tokens"])
async def test_create_base_text_units_metadata():
expected = load_test_table("text_units_metadata")
context = await create_test_context()
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
# test data was created with 4o, so we need to match the encoding for chunks to be identical
config.chunks.encoding_model = "o200k_base"
config.input.metadata = ["title"]
config.chunks.prepend_metadata = True
await update_document_metadata(config.input.metadata, context)
await run_workflow(config, context)
actual = await load_table_from_storage("text_units", context.storage)
compare_outputs(actual, expected)
async def test_create_base_text_units_metadata_included_in_chunk():
expected = load_test_table("text_units_metadata_included_chunk")
context = await create_test_context()
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
# test data was created with 4o, so we need to match the encoding for chunks to be identical
config.chunks.encoding_model = "o200k_base"
config.input.metadata = ["title"]
config.chunks.prepend_metadata = True
config.chunks.chunk_size_includes_metadata = True
await update_document_metadata(config.input.metadata, context)
await run_workflow(config, context)
actual = await load_table_from_storage("text_units", context.storage)
# only check the columns from the base workflow - our expected table is the final and will have more
compare_outputs(actual, expected, columns=["text", "document_ids", "n_tokens"])