Nathan Evans 1df89727c3
Pipeline registration (#1940)
* Move covariate run conditional

* All pipeline registration

* Fix method name construction

* Rename context storage -> output_storage

* Rename OutputConfig as generic StorageConfig

* Reuse Storage model under InputConfig

* Move input storage creation out of document loading

* Move document loading into workflows

* Semver

* Fix smoke test config for new workflows

* Fix unit tests

---------

Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-06-12 16:14:39 -07:00

36 lines
1.3 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
# isort: skip_file
"""A module containing the 'PipelineRunContext' models."""
from dataclasses import dataclass
from graphrag.cache.pipeline_cache import PipelineCache
from graphrag.callbacks.workflow_callbacks import WorkflowCallbacks
from graphrag.index.typing.state import PipelineState
from graphrag.index.typing.stats import PipelineRunStats
from graphrag.logger.base import ProgressLogger
from graphrag.storage.pipeline_storage import PipelineStorage
@dataclass
class PipelineRunContext:
"""Provides the context for the current pipeline run."""
stats: PipelineRunStats
input_storage: PipelineStorage
"Storage for input documents."
output_storage: PipelineStorage
"Long-term storage for pipeline verbs to use. Items written here will be written to the storage provider."
previous_storage: PipelineStorage
"Storage for previous pipeline run when running in update mode."
cache: PipelineCache
"Cache instance for reading previous LLM responses."
callbacks: WorkflowCallbacks
"Callbacks to be called during the pipeline run."
progress_logger: ProgressLogger
"Progress logger for the pipeline run."
state: PipelineState
"Arbitrary property bag for runtime state, persistent pre-computes, or experimental features."