graphrag/tests/verbs/util.py
Nathan Evans 1df89727c3
Pipeline registration (#1940)
* Move covariate run conditional

* All pipeline registration

* Fix method name construction

* Rename context storage -> output_storage

* Rename OutputConfig as generic StorageConfig

* Reuse Storage model under InputConfig

* Move input storage creation out of document loading

* Move document loading into workflows

* Semver

* Fix smoke test config for new workflows

* Fix unit tests

---------

Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-06-12 16:14:39 -07:00

94 lines
3.4 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import pandas as pd
from pandas.testing import assert_series_equal
import graphrag.config.defaults as defs
from graphrag.index.run.utils import create_run_context
from graphrag.index.typing.context import PipelineRunContext
from graphrag.utils.storage import load_table_from_storage, write_table_to_storage
pd.set_option("display.max_columns", None)
FAKE_API_KEY = "NOT_AN_API_KEY"
DEFAULT_CHAT_MODEL_CONFIG = {
"api_key": FAKE_API_KEY,
"type": defs.DEFAULT_CHAT_MODEL_TYPE.value,
"model": defs.DEFAULT_CHAT_MODEL,
}
DEFAULT_EMBEDDING_MODEL_CONFIG = {
"api_key": FAKE_API_KEY,
"type": defs.DEFAULT_EMBEDDING_MODEL_TYPE.value,
"model": defs.DEFAULT_EMBEDDING_MODEL,
}
DEFAULT_MODEL_CONFIG = {
defs.DEFAULT_CHAT_MODEL_ID: DEFAULT_CHAT_MODEL_CONFIG,
defs.DEFAULT_EMBEDDING_MODEL_ID: DEFAULT_EMBEDDING_MODEL_CONFIG,
}
async def create_test_context(storage: list[str] | None = None) -> PipelineRunContext:
"""Create a test context with tables loaded into storage storage."""
context = create_run_context()
# always set the input docs, but since our stored table is final, drop what wouldn't be in the original source input
input = load_test_table("documents")
input.drop(columns=["text_unit_ids"], inplace=True)
await write_table_to_storage(input, "documents", context.output_storage)
if storage:
for name in storage:
table = load_test_table(name)
await write_table_to_storage(table, name, context.output_storage)
return context
def load_test_table(output: str) -> pd.DataFrame:
"""Pass in the workflow output (generally the workflow name)"""
return pd.read_parquet(f"tests/verbs/data/{output}.parquet")
def compare_outputs(
actual: pd.DataFrame, expected: pd.DataFrame, columns: list[str] | None = None
) -> None:
"""Compare the actual and expected dataframes, optionally specifying columns to compare.
This uses assert_series_equal since we are sometimes intentionally omitting columns from the actual output.
"""
cols = expected.columns if columns is None else columns
assert len(actual) == len(expected), (
f"Expected: {len(expected)} rows, Actual: {len(actual)} rows"
)
for column in cols:
assert column in actual.columns
try:
# dtypes can differ since the test data is read from parquet and our workflow runs in memory
if column != "id": # don't check uuids
assert_series_equal(
actual[column],
expected[column],
check_dtype=False,
check_index=False,
)
except AssertionError:
print("Expected:")
print(expected[column])
print("Actual:")
print(actual[column])
raise
async def update_document_metadata(metadata: list[str], context: PipelineRunContext):
"""Takes the default documents and adds the configured metadata columns for later parsing by the text units and final documents workflows."""
documents = await load_table_from_storage("documents", context.output_storage)
documents["metadata"] = documents[metadata].apply(lambda row: row.to_dict(), axis=1)
await write_table_to_storage(
documents, "documents", context.output_storage
) # write to the runtime context storage only