Alonso Guevara 53950f8442
Fix/model provider key injection check (#1799)
* Check available models for type validation

* Semver

* Fix ruff and pyright

* Apply feedback
2025-03-11 17:48:30 -06:00

88 lines
2.7 KiB
Python

# Copyright (c) 2025 Microsoft Corporation.
# Licensed under the MIT License
"""LLMFactory Tests.
These tests will test the LLMFactory class and the creation of custom and provided LLMs.
"""
from collections.abc import AsyncGenerator, Generator
from typing import Any
from graphrag.language_model.factory import ModelFactory
from graphrag.language_model.manager import ModelManager
from graphrag.language_model.response.base import (
BaseModelOutput,
BaseModelResponse,
ModelResponse,
)
async def test_create_custom_chat_model():
class CustomChatModel:
def __init__(self, **kwargs):
pass
async def achat(
self, prompt: str, history: list | None = None, **kwargs: Any
) -> ModelResponse:
return BaseModelResponse(output=BaseModelOutput(content="content"))
def chat(
self, prompt: str, history: list | None = None, **kwargs: Any
) -> ModelResponse:
return BaseModelResponse(output=BaseModelOutput(content="content"))
async def achat_stream(
self, prompt: str, history: list | None = None, **kwargs: Any
) -> AsyncGenerator[str, None]:
yield ""
def chat_stream(
self, prompt: str, history: list | None = None, **kwargs: Any
) -> Generator[str, None]: ...
ModelFactory.register_chat("custom_chat", CustomChatModel)
model = ModelManager().get_or_create_chat_model("custom", "custom_chat")
assert isinstance(model, CustomChatModel)
response = await model.achat("prompt")
assert response.output.content == "content"
response = model.chat("prompt")
assert response.output.content == "content"
async def test_create_custom_embedding_llm():
class CustomEmbeddingModel:
def __init__(self, **kwargs):
pass
async def aembed(self, text: str, **kwargs) -> list[float]:
return [1.0]
def embed(self, text: str, **kwargs) -> list[float]:
return [1.0]
async def aembed_batch(
self, text_list: list[str], **kwargs
) -> list[list[float]]:
return [[1.0]]
def embed_batch(self, text_list: list[str], **kwargs) -> list[list[float]]:
return [[1.0]]
ModelFactory.register_embedding("custom_embedding", CustomEmbeddingModel)
llm = ModelManager().get_or_create_embedding_model("custom", "custom_embedding")
assert isinstance(llm, CustomEmbeddingModel)
response = await llm.aembed("text")
assert response == [1.0]
response = llm.embed("text")
assert response == [1.0]
response = await llm.aembed_batch(["text"])
assert response == [[1.0]]
response = llm.embed_batch(["text"])
assert response == [[1.0]]