mirror of
https://github.com/microsoft/graphrag.git
synced 2025-07-03 07:04:19 +00:00

* Make base_entity_graph transient * Add transient snapshots * Semver * Fix unit test * Fix smoke tests
198 lines
6.1 KiB
Python
198 lines
6.1 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
|
|
import networkx as nx
|
|
import pytest
|
|
|
|
from graphrag.config.enums import LLMType
|
|
from graphrag.index.run.utils import create_run_context
|
|
from graphrag.index.workflows.v1.create_base_entity_graph import (
|
|
build_steps,
|
|
workflow_name,
|
|
)
|
|
|
|
from .util import (
|
|
get_config_for_workflow,
|
|
get_workflow_output,
|
|
load_expected,
|
|
load_input_tables,
|
|
)
|
|
|
|
MOCK_LLM_ENTITY_RESPONSES = [
|
|
"""
|
|
("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company)
|
|
##
|
|
("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A)
|
|
##
|
|
("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A)
|
|
##
|
|
("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2)
|
|
##
|
|
("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1))
|
|
""".strip()
|
|
]
|
|
|
|
MOCK_LLM_ENTITY_CONFIG = {
|
|
"type": LLMType.StaticResponse,
|
|
"responses": MOCK_LLM_ENTITY_RESPONSES,
|
|
}
|
|
|
|
MOCK_LLM_SUMMARIZATION_RESPONSES = [
|
|
"""
|
|
This is a MOCK response for the LLM. It is summarized!
|
|
""".strip()
|
|
]
|
|
|
|
MOCK_LLM_SUMMARIZATION_CONFIG = {
|
|
"type": LLMType.StaticResponse,
|
|
"responses": MOCK_LLM_SUMMARIZATION_RESPONSES,
|
|
}
|
|
|
|
|
|
async def test_create_base_entity_graph():
|
|
input_tables = load_input_tables([
|
|
"workflow:create_base_text_units",
|
|
])
|
|
expected = load_expected(workflow_name)
|
|
|
|
context = create_run_context(None, None, None)
|
|
await context.runtime_storage.set(
|
|
"base_text_units", input_tables["workflow:create_base_text_units"]
|
|
)
|
|
|
|
config = get_config_for_workflow(workflow_name)
|
|
config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG
|
|
config["summarize_descriptions"]["strategy"]["llm"] = MOCK_LLM_SUMMARIZATION_CONFIG
|
|
|
|
steps = build_steps(config)
|
|
|
|
await get_workflow_output(
|
|
input_tables,
|
|
{
|
|
"steps": steps,
|
|
},
|
|
context=context,
|
|
)
|
|
|
|
actual = await context.runtime_storage.get("base_entity_graph")
|
|
|
|
assert len(actual.columns) == len(
|
|
expected.columns
|
|
), "Graph dataframe columns differ"
|
|
# let's parse a sample of the raw graphml
|
|
actual_graphml_0 = actual["clustered_graph"][:1][0]
|
|
actual_graph_0 = nx.parse_graphml(actual_graphml_0)
|
|
|
|
assert actual_graph_0.number_of_nodes() == 3
|
|
assert actual_graph_0.number_of_edges() == 2
|
|
|
|
# TODO: with the combined verb we can't force summarization
|
|
# this is because the mock responses always result in a single description, which is returned verbatim rather than summarized
|
|
# we need to update the mocking to provide somewhat unique graphs so a true merge happens
|
|
# the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below
|
|
nodes = list(actual_graph_0.nodes(data=True))
|
|
assert nodes[0][1]["description"] == "Company_A is a test company"
|
|
|
|
assert len(context.storage.keys()) == 0, "Storage should be empty"
|
|
|
|
|
|
async def test_create_base_entity_graph_with_embeddings():
|
|
input_tables = load_input_tables([
|
|
"workflow:create_base_text_units",
|
|
])
|
|
expected = load_expected(workflow_name)
|
|
|
|
context = create_run_context(None, None, None)
|
|
await context.runtime_storage.set(
|
|
"base_text_units", input_tables["workflow:create_base_text_units"]
|
|
)
|
|
|
|
config = get_config_for_workflow(workflow_name)
|
|
|
|
config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG
|
|
config["summarize_descriptions"]["strategy"]["llm"] = MOCK_LLM_SUMMARIZATION_CONFIG
|
|
config["embed_graph_enabled"] = True
|
|
|
|
steps = build_steps(config)
|
|
|
|
await get_workflow_output(
|
|
input_tables,
|
|
{
|
|
"steps": steps,
|
|
},
|
|
context=context,
|
|
)
|
|
|
|
actual = await context.runtime_storage.get("base_entity_graph")
|
|
|
|
assert (
|
|
len(actual.columns) == len(expected.columns) + 1
|
|
), "Graph dataframe missing embedding column"
|
|
assert "embeddings" in actual.columns, "Graph dataframe missing embedding column"
|
|
|
|
|
|
async def test_create_base_entity_graph_with_snapshots():
|
|
input_tables = load_input_tables([
|
|
"workflow:create_base_text_units",
|
|
])
|
|
|
|
context = create_run_context(None, None, None)
|
|
await context.runtime_storage.set(
|
|
"base_text_units", input_tables["workflow:create_base_text_units"]
|
|
)
|
|
|
|
config = get_config_for_workflow(workflow_name)
|
|
|
|
config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG
|
|
config["summarize_descriptions"]["strategy"]["llm"] = MOCK_LLM_SUMMARIZATION_CONFIG
|
|
config["snapshot_raw_entities"] = True
|
|
config["snapshot_graphml"] = True
|
|
config["snapshot_transient"] = True
|
|
config["embed_graph_enabled"] = True # need this on in order to see the snapshot
|
|
|
|
steps = build_steps(config)
|
|
|
|
await get_workflow_output(
|
|
input_tables,
|
|
{
|
|
"steps": steps,
|
|
},
|
|
context=context,
|
|
)
|
|
|
|
assert context.storage.keys() == [
|
|
"raw_extracted_entities.json",
|
|
"merged_graph.graphml",
|
|
"summarized_graph.graphml",
|
|
"clustered_graph.graphml",
|
|
"embedded_graph.graphml",
|
|
"create_base_entity_graph.parquet",
|
|
], "Graph snapshot keys differ"
|
|
|
|
|
|
async def test_create_base_entity_graph_missing_llm_throws():
|
|
input_tables = load_input_tables([
|
|
"workflow:create_base_text_units",
|
|
])
|
|
|
|
context = create_run_context(None, None, None)
|
|
await context.runtime_storage.set(
|
|
"base_text_units", input_tables["workflow:create_base_text_units"]
|
|
)
|
|
|
|
config = get_config_for_workflow(workflow_name)
|
|
|
|
config["entity_extract"]["strategy"]["llm"] = MOCK_LLM_ENTITY_CONFIG
|
|
del config["summarize_descriptions"]["strategy"]["llm"]
|
|
|
|
steps = build_steps(config)
|
|
|
|
with pytest.raises(ValueError): # noqa PT011
|
|
await get_workflow_output(
|
|
input_tables,
|
|
{
|
|
"steps": steps,
|
|
},
|
|
context=context,
|
|
)
|