graphrag/tests/verbs/test_extract_graph.py
Alonso Guevara 7bdeaee94a
Create Language Model Providers and Registry methods. Remove fnllm coupling (#1724)
* Base structure

* Add fnllm providers and Mock LLM

* Remove fnllm coupling, introduce llm providers

* Ruff + Tests fix

* Spellcheck

* Semver

* Format

* Default MockChat params

* Fix more tests

* Fix embedding smoke test

* Fix embeddings smoke test

* Fix MockEmbeddingLLM

* Rename LLM to model. Package organization

* Fix prompt tuning

* Oops

* Oops II
2025-02-20 08:56:20 -06:00

80 lines
3.0 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.callbacks.noop_workflow_callbacks import NoopWorkflowCallbacks
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.enums import ModelType
from graphrag.index.workflows.extract_graph import (
run_workflow,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
create_test_context,
)
MOCK_LLM_ENTITY_RESPONSES = [
"""
("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company)
##
("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A)
##
("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A)
##
("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2)
##
("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1))
""".strip()
]
MOCK_LLM_SUMMARIZATION_RESPONSES = [
"""
This is a MOCK response for the LLM. It is summarized!
""".strip()
]
async def test_extract_graph():
context = await create_test_context(
storage=["text_units"],
)
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
extract_claims_llm_settings = config.get_language_model_config(
config.extract_graph.model_id
).model_dump()
extract_claims_llm_settings["type"] = ModelType.MockChat
extract_claims_llm_settings["responses"] = MOCK_LLM_ENTITY_RESPONSES
config.extract_graph.strategy = {
"type": "graph_intelligence",
"llm": extract_claims_llm_settings,
}
summarize_llm_settings = config.get_language_model_config(
config.summarize_descriptions.model_id
).model_dump()
summarize_llm_settings["type"] = ModelType.MockChat
summarize_llm_settings["responses"] = MOCK_LLM_SUMMARIZATION_RESPONSES
config.summarize_descriptions.strategy = {
"type": "graph_intelligence",
"llm": summarize_llm_settings,
}
await run_workflow(
config,
context,
NoopWorkflowCallbacks(),
)
nodes_actual = await load_table_from_storage("entities", context.storage)
edges_actual = await load_table_from_storage("relationships", context.storage)
assert len(nodes_actual.columns) == 5
assert len(edges_actual.columns) == 5
# TODO: with the combined verb we can't force summarization
# this is because the mock responses always result in a single description, which is returned verbatim rather than summarized
# we need to update the mocking to provide somewhat unique graphs so a true merge happens
# the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below
assert nodes_actual["description"].to_numpy()[0] == "Company_A is a test company"