graphrag/tests/verbs/test_generate_text_embeddings.py
Alonso Guevara 7bdeaee94a
Create Language Model Providers and Registry methods. Remove fnllm coupling (#1724)
* Base structure

* Add fnllm providers and Mock LLM

* Remove fnllm coupling, introduce llm providers

* Ruff + Tests fix

* Spellcheck

* Semver

* Format

* Default MockChat params

* Fix more tests

* Fix embedding smoke test

* Fix embeddings smoke test

* Fix MockEmbeddingLLM

* Rename LLM to model. Package organization

* Fix prompt tuning

* Oops

* Oops II
2025-02-20 08:56:20 -06:00

74 lines
2.3 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.callbacks.noop_workflow_callbacks import NoopWorkflowCallbacks
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.embeddings import (
all_embeddings,
)
from graphrag.config.enums import ModelType, TextEmbeddingTarget
from graphrag.index.operations.embed_text.embed_text import TextEmbedStrategyType
from graphrag.index.workflows.generate_text_embeddings import (
run_workflow,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
create_test_context,
)
async def test_generate_text_embeddings():
context = await create_test_context(
storage=[
"documents",
"relationships",
"text_units",
"entities",
"community_reports",
]
)
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
llm_settings = config.get_language_model_config(
config.embed_text.model_id
).model_dump()
llm_settings["type"] = ModelType.MockEmbedding
config.embed_text.strategy = {
"type": TextEmbedStrategyType.openai,
"llm": llm_settings,
}
config.embed_text.target = TextEmbeddingTarget.all
config.snapshots.embeddings = True
await run_workflow(
config,
context,
NoopWorkflowCallbacks(),
)
parquet_files = context.storage.keys()
for field in all_embeddings:
assert f"embeddings.{field}.parquet" in parquet_files
# entity description should always be here, let's assert its format
entity_description_embeddings = await load_table_from_storage(
"embeddings.entity.description", context.storage
)
assert len(entity_description_embeddings.columns) == 2
assert "id" in entity_description_embeddings.columns
assert "embedding" in entity_description_embeddings.columns
# every other embedding is optional but we've turned them all on, so check a random one
document_text_embeddings = await load_table_from_storage(
"embeddings.document.text", context.storage
)
assert len(document_text_embeddings.columns) == 2
assert "id" in document_text_embeddings.columns
assert "embedding" in document_text_embeddings.columns