graphrag/tests/verbs/test_extract_graph.py
Nathan Evans a35cb12741
Remove datashaper strip code (#1581)
Remove datashaper
2025-01-03 13:59:26 -08:00

115 lines
3.6 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import pytest
from graphrag.callbacks.noop_verb_callbacks import NoopVerbCallbacks
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.enums import LLMType
from graphrag.index.workflows.extract_graph import (
run_workflow,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
create_test_context,
load_test_table,
)
MOCK_LLM_ENTITY_RESPONSES = [
"""
("entity"<|>COMPANY_A<|>COMPANY<|>Company_A is a test company)
##
("entity"<|>COMPANY_B<|>COMPANY<|>Company_B owns Company_A and also shares an address with Company_A)
##
("entity"<|>PERSON_C<|>PERSON<|>Person_C is director of Company_A)
##
("relationship"<|>COMPANY_A<|>COMPANY_B<|>Company_A and Company_B are related because Company_A is 100% owned by Company_B and the two companies also share the same address)<|>2)
##
("relationship"<|>COMPANY_A<|>PERSON_C<|>Company_A and Person_C are related because Person_C is director of Company_A<|>1))
""".strip()
]
MOCK_LLM_ENTITY_CONFIG = {
"type": LLMType.StaticResponse,
"responses": MOCK_LLM_ENTITY_RESPONSES,
}
MOCK_LLM_SUMMARIZATION_RESPONSES = [
"""
This is a MOCK response for the LLM. It is summarized!
""".strip()
]
MOCK_LLM_SUMMARIZATION_CONFIG = {
"type": LLMType.StaticResponse,
"responses": MOCK_LLM_SUMMARIZATION_RESPONSES,
}
async def test_extract_graph():
nodes_expected = load_test_table("base_entity_nodes")
edges_expected = load_test_table("base_relationship_edges")
context = await create_test_context(
storage=["create_base_text_units"],
)
config = create_graphrag_config()
config.entity_extraction.strategy = {
"type": "graph_intelligence",
"llm": MOCK_LLM_ENTITY_CONFIG,
}
config.summarize_descriptions.strategy = {
"type": "graph_intelligence",
"llm": MOCK_LLM_SUMMARIZATION_CONFIG,
}
await run_workflow(
config,
context,
NoopVerbCallbacks(),
)
# graph construction creates transient tables for nodes, edges, and communities
nodes_actual = await load_table_from_storage("base_entity_nodes", context.storage)
edges_actual = await load_table_from_storage(
"base_relationship_edges", context.storage
)
assert len(nodes_actual.columns) == len(nodes_expected.columns), (
"Nodes dataframe columns differ"
)
assert len(edges_actual.columns) == len(edges_expected.columns), (
"Edges dataframe columns differ"
)
# TODO: with the combined verb we can't force summarization
# this is because the mock responses always result in a single description, which is returned verbatim rather than summarized
# we need to update the mocking to provide somewhat unique graphs so a true merge happens
# the assertion should grab a node and ensure the description matches the mock description, not the original as we are doing below
assert nodes_actual["description"].to_numpy()[0] == "Company_A is a test company"
async def test_extract_graph_missing_llm_throws():
context = await create_test_context(
storage=["create_base_text_units"],
)
config = create_graphrag_config()
config.entity_extraction.strategy = {
"type": "graph_intelligence",
"llm": MOCK_LLM_ENTITY_CONFIG,
}
config.summarize_descriptions.strategy = {
"type": "graph_intelligence",
}
with pytest.raises(ValueError): # noqa PT011
await run_workflow(
config,
context,
NoopVerbCallbacks(),
)