mirror of
https://github.com/microsoft/graphrag.git
synced 2025-09-17 20:24:20 +00:00
324 lines
10 KiB
HTML
324 lines
10 KiB
HTML
|
|
|
|
|
|
|
|
<!doctype html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
<title>Question Generation ❔</title>
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bulma@0.9.4/css/bulma.min.css">
|
|
<link href="https://unpkg.com/prismjs@1.20.0/themes/prism-okaidia.css" rel="stylesheet">
|
|
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/Primer/19.1.1/tooltips.min.css" crossorigin="anonymous" referrerpolicy="no-referrer">
|
|
<style>
|
|
html {
|
|
padding: 0;
|
|
margin: 0;
|
|
}
|
|
|
|
body{
|
|
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
|
|
padding: 0;
|
|
margin: 0;
|
|
}
|
|
|
|
footer{
|
|
width: 100%;
|
|
height: 32px;
|
|
font-size: 12px;
|
|
display: flex;
|
|
flex-direction: row;
|
|
justify-content: center;
|
|
gap: 18px;
|
|
align-items: center;
|
|
color: #5d5d5d;
|
|
background: #e9eaeb;
|
|
border-top: 1px solid #c4c5c6;
|
|
}
|
|
|
|
#cookiesManager{
|
|
cursor: pointer;
|
|
color: #485fc7;
|
|
}
|
|
|
|
.page-content {
|
|
display: flex;
|
|
flex-direction: row;
|
|
margin: 0;
|
|
padding: 0;
|
|
overflow: scroll;
|
|
padding: 0;
|
|
margin: 0;
|
|
}
|
|
|
|
header {
|
|
background-color: lightgrey;
|
|
height: 2%;
|
|
padding: 10px;
|
|
}
|
|
|
|
nav {
|
|
padding: 1em;
|
|
min-width: 200px;
|
|
}
|
|
|
|
main {
|
|
flex: 1;
|
|
padding: 0 5em 0 5em;
|
|
}
|
|
|
|
.logotitle {
|
|
font-size: 1.5em;
|
|
font-weight: bold;
|
|
margin: 5px;
|
|
}
|
|
|
|
.number {
|
|
all: unset;
|
|
}
|
|
|
|
.tag.token {
|
|
all: unset;
|
|
}
|
|
|
|
main ul {
|
|
list-style-type: disc;
|
|
padding-left: 30px;
|
|
margin-top: 10px;
|
|
}
|
|
|
|
h1 {
|
|
font-size: 2rem;
|
|
margin-top: 10px;
|
|
}
|
|
|
|
h2 {
|
|
font-size: 1.5rem;
|
|
margin-top: 10px;
|
|
font-weight: 500;
|
|
}
|
|
|
|
h3 {
|
|
font-size: 1rem;
|
|
margin-top: 10px;
|
|
font-weight: 500;
|
|
}
|
|
p {
|
|
margin-top: 10px;
|
|
}
|
|
|
|
/* Accessibility styling */
|
|
|
|
a {
|
|
color: #485fc7;
|
|
text-decoration: underline;
|
|
}
|
|
|
|
.menu-list a {
|
|
text-decoration: none;
|
|
}
|
|
|
|
|
|
.token.comment, .token.prolog, .token.doctype, .token.cdata {
|
|
color: #8093a5;
|
|
}
|
|
|
|
.token.property, .token.tag, .token.constant, .token.symbol, .token.deleted {
|
|
color: #ff36ab;
|
|
}
|
|
</style>
|
|
<script type="module" async="">import mermaid from "https://unpkg.com/mermaid@10/dist/mermaid.esm.min.mjs";document.addEventListener('DOMContentLoaded', mermaid.initialize({"loadOnSave":true}));</script>
|
|
<script>function showTooltip(o,e){o.trigger.className.includes("tooltipped")||(o.trigger.children[0].className="tooltipped tooltipped-s",o.trigger.children[0].ariaLabel=e)}window.addEventListener("load",()=>{var o=new ClipboardJS(".code-copy");o.on("success",o=>showTooltip(o,"Copied!")),o.on("error",o=>showTooltip(o,"Failed..."))});</script>
|
|
<script async="" src="https://cdn.jsdelivr.net/npm/clipboard@2.0.11/dist/clipboard.min.js"></script>
|
|
|
|
|
|
<script src="https://wcpstatic.microsoft.com/mscc/lib/v2/wcp-consent.js" type="text/javascript"></script>
|
|
<script>
|
|
function onConsentChanged(categoryPreferences) {
|
|
console.log("onConsentChanged", categoryPreferences);
|
|
}
|
|
|
|
var siteConsent
|
|
|
|
function initialize(){
|
|
var currentYear = new Date().getFullYear()
|
|
document.getElementById("copyright").innerHTML = `©️ ${currentYear} Microsoft`;
|
|
window.WcpConsent && WcpConsent.init("en-US", "cookie-banner", function (err, _siteConsent) {
|
|
if (!err) {
|
|
siteConsent = _siteConsent; //siteConsent is used to get the current consent
|
|
} else {
|
|
console.log("Error initializing WcpConsent: "+ err);
|
|
}
|
|
}, onConsentChanged, WcpConsent.themes.light);
|
|
}
|
|
|
|
addEventListener("DOMContentLoaded", initialize)
|
|
addEventListener("DOMContentLoaded", checkCookieManager)
|
|
|
|
function checkCookieManager(){
|
|
if(siteConsent.isConsentRequired){
|
|
document.getElementById("cookiesManager").style.display = 'block';
|
|
document.getElementById("divider").style.display = 'block';
|
|
}
|
|
else{
|
|
document.getElementById("cookiesManager").style.display = 'none';
|
|
document.getElementById("divider").style.display = 'none';
|
|
}
|
|
}
|
|
|
|
function manageConsent() {
|
|
if(siteConsent.isConsentRequired){
|
|
siteConsent.manageConsent();
|
|
}
|
|
}
|
|
</script>
|
|
|
|
</head>
|
|
<body>
|
|
<header>
|
|
<div id="cookie-banner"></div>
|
|
<a href="/"><span class="logotitle">GraphRAG</span></a>
|
|
</header>
|
|
<div class="page-content">
|
|
<!-- Sidebar -->
|
|
<aside class="menu">
|
|
<ul class="menu-list">
|
|
<li>
|
|
|
|
<a href="/">Welcome</a>
|
|
|
|
</li>
|
|
|
|
<!-- Get Started Links -->
|
|
<li>
|
|
|
|
<a href="/posts/get_started/">Get Started</a>
|
|
|
|
|
|
<a href="/posts/developing/">Developing</a>
|
|
|
|
</li>
|
|
|
|
<!-- Indexing Links -->
|
|
<li>
|
|
|
|
<a href="/posts/index/overview/">Indexing</a>
|
|
|
|
<ul><li>
|
|
<a href="/posts/index/0-architecture/">Architecture</a>
|
|
</li><li>
|
|
<a href="/posts/index/1-default_dataflow/">Dataflow</a>
|
|
</li><li>
|
|
<a href="/posts/index/2-cli/">CLI</a>
|
|
</li><li>
|
|
|
|
<a href="/posts/config/overview/">Configuration</a>
|
|
|
|
<ul>
|
|
<li>
|
|
<a href="/posts/config/env_vars">Using Env Vars</a>
|
|
</li>
|
|
<li>
|
|
<a href="/posts/config/json_yaml">Using JSON or YAML</a>
|
|
</li>
|
|
<li>
|
|
<a href="/posts/config/custom">Fully Custom</a>
|
|
</li>
|
|
<li>
|
|
<a href="/posts/config/template">Template</a>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
|
|
<li>
|
|
|
|
<a href="/posts/prompt_tuning/overview/">Prompt Tuning</a>
|
|
|
|
<ul>
|
|
<li>
|
|
|
|
<a href="/posts/prompt_tuning/auto_prompt_tuning/">Automatic Templating</a>
|
|
|
|
</li>
|
|
<li>
|
|
|
|
<a href="/posts/prompt_tuning/manual_prompt_tuning/">Manual Prompt Tuning</a>
|
|
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
|
|
|
|
<!-- Query Links -->
|
|
<li>
|
|
|
|
<a href="/posts/query/overview/">Query</a>
|
|
|
|
<ul><li>
|
|
<a href="/posts/query/1-local_search/">Local Search</a>
|
|
</li><li>
|
|
<a href="/posts/query/2-question_generation/" class="is-active" aria-current="page">Question Generation</a>
|
|
</li><li>
|
|
<a href="/posts/query/0-global_search/">Global Search</a>
|
|
</li><li>
|
|
<a href="/posts/query/3-cli/">CLI</a>
|
|
</li><li>
|
|
|
|
<a href="/posts/query/notebooks/overview/">Notebooks</a>
|
|
|
|
<ul>
|
|
<li>
|
|
<a href="/posts/query/notebooks/global_search_nb">Global Search</a>
|
|
</li>
|
|
<li>
|
|
<a href="/posts/query/notebooks/local_search_nb">Local Search</a>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</aside>
|
|
|
|
<!-- Main Content -->
|
|
<main>
|
|
<h1>Question Generation ❔</h1>
|
|
<h2>Entity-based Question Generation</h2>
|
|
<p>The <a href="https://github.com/microsoft/graphrag/blob/main//graphrag/query/question_gen/">question generation</a> method combines structured data from the knowledge graph with unstructured data from the input documents to generate candidate questions related to specific entities.</p>
|
|
<h2>Methodology</h2>
|
|
<p>Given a list of prior user questions, the question generation method uses the same context-building approach employed in <a href="1-local_search.md">local search</a> to extract and prioritize relevant structured and unstructured data, including entities, relationships, covariates, community reports and raw text chunks. These data records are then fitted into a single LLM prompt to generate candidate follow-up questions that represent the most important or urgent information content or themes in the data.</p>
|
|
<h2>Configuration</h2>
|
|
<p>Below are the key parameters of the <a href="https://github.com/microsoft/graphrag/blob/main//graphrag/query/question_gen/local_gen.py">Question Generation class</a>:</p>
|
|
<ul>
|
|
<li><code>llm</code>: OpenAI model object to be used for response generation</li>
|
|
<li><code>context_builder</code>: <a href="https://github.com/microsoft/graphrag/blob/main//graphrag/query/structured_search/local_search/mixed_context.py">context builder</a> object to be used for preparing context data from collections of knowledge model objects, using the same context builder class as in local search</li>
|
|
<li><code>system_prompt</code>: prompt template used to generate candidate questions. Default template can be found at <a href="https://github.com/microsoft/graphrag/blob/main//graphrag/query/question_gen/system_prompt.py">system_prompt</a></li>
|
|
<li><code>llm_params</code>: a dictionary of additional parameters (e.g., temperature, max_tokens) to be passed to the LLM call</li>
|
|
<li><code>context_builder_params</code>: a dictionary of additional parameters to be passed to the <a href="https://github.com/microsoft/graphrag/blob/main//graphrag/query/structured_search/local_search/mixed_context.py"><code>context_builder</code></a> object when building context for the question generation prompt</li>
|
|
<li><code>callbacks</code>: optional callback functions, can be used to provide custom event handlers for LLM's completion streaming events</li>
|
|
</ul>
|
|
<h2>How to Use</h2>
|
|
<p>An example of the question generation function can be found in the following <a href="../notebooks/local_search_nb">notebook</a>.</p>
|
|
|
|
</main>
|
|
</div>
|
|
<footer>
|
|
<a href="https://go.microsoft.com/fwlink/?LinkId=521839">Privacy</a>
|
|
|
|
|
<a href="https://go.microsoft.com/fwlink/?LinkId=2259814">Consumer Health Privacy</a>
|
|
|
|
|
<span id="cookiesManager" onClick="manageConsent();">Cookies</span>
|
|
<span id="divider">|</span>
|
|
<a href="https://go.microsoft.com/fwlink/?LinkID=206977">Terms of Use</a>
|
|
|
|
|
<a href="https://www.microsoft.com/trademarks">Trademarks</a>
|
|
|
|
|
<a href="https://www.microsoft.com" id="copyright"></a>
|
|
|
|
|
<a href="https://github.com/microsoft/graphrag">GitHub</a>
|
|
</footer>
|
|
</body>
|
|
</html> |