graphrag/tests/verbs/test_generate_text_embeddings.py
Derek Worthen c644338bae
Refactor config (#1593)
* Refactor config

- Add new ModelConfig to represent LLM settings
    - Combines LLMParameters, ParallelizationParameters, encoding_model, and async_mode
- Add top level models config that is a list of available LLM ModelConfigs
- Remove LLMConfig inheritance and delete LLMConfig
    - Replace the inheritance with a model_id reference to the ModelConfig listed in the top level models config
- Remove all fallbacks and hydration logic from create_graphrag_config
    - This removes the automatic env variable overrides
- Support env variables within config files using Templating
    - This requires "$" to be escaped with extra "$" so ".*\\.txt$" becomes ".*\\.txt$$"
- Update init content to initialize new config file with the ModelConfig structure

* Use dict of ModelConfig instead of list

* Add model validations and unit tests

* Fix ruff checks

* Add semversioner change

* Fix unit tests

* validate root_dir in pydantic model

* Rename ModelConfig to LanguageModelConfig

* Rename ModelConfigMissingError to LanguageModelConfigMissingError

* Add validationg for unexpected API keys

* Allow skipping pydantic validation for testing/mocking purposes.

* Add default lm configs to verb tests

* smoke test

* remove config from flows to fix llm arg mapping

* Fix embedding llm arg mapping

* Remove timestamp from smoke test outputs

* Remove unused "subworkflows" smoke test properties

* Add models to smoke test configs

* Update smoke test output path

* Send logs to logs folder

* Fix output path

* Fix csv test file pattern

* Update placeholder

* Format

* Instantiate default model configs

* Fix unit tests for config defaults

* Fix migration notebook

* Remove create_pipeline_config

* Remove several unused config models

* Remove indexing embedding and input configs

* Move embeddings function to config

* Remove skip_workflows

* Remove skip embeddings in favor of explicit naming

* fix unit test spelling mistake

* self.models[model_id] is already a language model. Remove redundant casting.

* update validation errors to instruct users to rerun graphrag init

* instantiate LanguageModelConfigs with validation

* skip validation in unit tests

* update verb tests to use default model settings instead of skipping validation

* test using llm settings

* cleanup verb tests

* remove unsafe default model config

* remove the ability to skip pydantic validation

* remove None union types when default values are set

* move vector_store from embeddings to top level of config and delete resolve_paths

* update vector store settings

* fix vector store and smoke tests

* fix serializing vector_store settings

* fix vector_store usage

* fix vector_store type

* support cli overrides for loading graphrag config

* rename storage to output

* Add --force flag to init

* Remove run_id and resume, fix Drift config assignment

* Ruff

---------

Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
Co-authored-by: Alonso Guevara <alonsog@microsoft.com>
2025-01-21 17:52:06 -06:00

72 lines
2.2 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from graphrag.callbacks.noop_workflow_callbacks import NoopWorkflowCallbacks
from graphrag.config.create_graphrag_config import create_graphrag_config
from graphrag.config.embeddings import (
all_embeddings,
)
from graphrag.config.enums import TextEmbeddingTarget
from graphrag.index.workflows.generate_text_embeddings import (
run_workflow,
)
from graphrag.utils.storage import load_table_from_storage
from .util import (
DEFAULT_MODEL_CONFIG,
create_test_context,
)
async def test_generate_text_embeddings():
context = await create_test_context(
storage=[
"create_final_documents",
"create_final_relationships",
"create_final_text_units",
"create_final_entities",
"create_final_community_reports",
]
)
config = create_graphrag_config({"models": DEFAULT_MODEL_CONFIG})
llm_settings = config.get_language_model_config(
config.embeddings.model_id
).model_dump()
config.embeddings.strategy = {
"type": "mock",
"llm": llm_settings,
}
config.embeddings.target = TextEmbeddingTarget.all
config.snapshots.embeddings = True
await run_workflow(
config,
context,
NoopWorkflowCallbacks(),
)
parquet_files = context.storage.keys()
for field in all_embeddings:
assert f"embeddings.{field}.parquet" in parquet_files
# entity description should always be here, let's assert its format
entity_description_embeddings = await load_table_from_storage(
"embeddings.entity.description", context.storage
)
assert len(entity_description_embeddings.columns) == 2
assert "id" in entity_description_embeddings.columns
assert "embedding" in entity_description_embeddings.columns
# every other embedding is optional but we've turned them all on, so check a random one
document_text_embeddings = await load_table_from_storage(
"embeddings.document.text", context.storage
)
assert len(document_text_embeddings.columns) == 2
assert "id" in document_text_embeddings.columns
assert "embedding" in document_text_embeddings.columns