graphrag/tests/verbs/test_generate_text_embeddings.py
Nathan Evans c8c354e357
Artifact cleanup (#1341)
* Add source documents for verb tests

* Remove entity_type erroneous column

* Add new test data

* Remove source/target degree columns

* Remove top_level_node_id

* Remove chunk column configs

* Rename "chunk" to "text"

* Rename "chunk" to "text" in base

* Re-map document input to use base text units

* Revert base text units as final documents dep

* Update test data

* Split/rename node source_id

* Drop node size (dup of degree)

* Drop document_ids from covariates

* Remove unused document_ids from models

* Remove n_tokens from covariate table

* Fix missed document_ids delete

* Wire base text units to final documents

* Rename relationship rank as combined_degree

* Add rank as first-class property to Relationship

* Remove split_text operation

* Fix relationships test parquet

* Update test parquets

* Add entity ids to community table

* Remove stored graph embedding columns

* Format

* Semver

* Fix JSON typo

* Spelling

* Rename lancedb

* Sort lancedb

* Fix unit test

* Fix test to account for changing period

* Update tests for separate embeddings

* Format

* Better assertion printing

* Fix unit test for windows

* Rename document.raw_content -> document.text

* Remove read_documents function

* Remove unused document summary from model

* Remove unused imports

* Format

* Add new snapshots to default init

* Use util to construct embeddings collection name

* Align inc index model with branch changes

* Update data and tests for int ids

* Clean up embedding locs

* Switch entity "name" to "title" for consistency

* Fix short_id -> human_readable_id defaults

* Format

* Rework community IDs

* Fix community size compute

* Fix unit tests

* Fix report read

* Pare down nodes table output

* Fix unit test

* Fix merge

* Fix community loading

* Format

* Fix community id report extraction

* Update tests

* Consistent short IDs and ordering

* Update ordering and tests

* Update incremental for new nodes model

* Guard document columns loc

* Match column ordering

* Fix document guard

* Update smoke tests

* Fill NA on community extract

* Logging for smoke test debug

* Add parquet schema details doc

* Fix community hierarchy guard

* Use better empty hierarchy guard

* Back-compat shims

* Semver

* Fix warning

* Format

* Remove default fallback

* Reuse key
2024-11-13 15:11:19 -08:00

79 lines
2.3 KiB
Python

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
from io import BytesIO
import pandas as pd
from graphrag.index.config.embeddings import (
all_embeddings,
)
from graphrag.index.run.utils import create_run_context
from graphrag.index.workflows.v1.generate_text_embeddings import (
build_steps,
workflow_name,
)
from .util import (
get_config_for_workflow,
get_workflow_output,
load_input_tables,
)
async def test_generate_text_embeddings():
input_tables = load_input_tables(
inputs=[
"workflow:create_final_documents",
"workflow:create_final_relationships",
"workflow:create_final_text_units",
"workflow:create_final_entities",
"workflow:create_final_community_reports",
]
)
context = create_run_context(None, None, None)
config = get_config_for_workflow(workflow_name)
config["text_embed"]["strategy"]["type"] = "mock"
config["snapshot_embeddings"] = True
config["embedded_fields"] = all_embeddings
steps = build_steps(config)
await get_workflow_output(
input_tables,
{
"steps": steps,
},
context,
)
parquet_files = context.storage.keys()
for field in all_embeddings:
assert f"embeddings.{field}.parquet" in parquet_files
# entity description should always be here, let's assert its format
entity_description_embeddings_buffer = BytesIO(
await context.storage.get(
"embeddings.entity.description.parquet", as_bytes=True
)
)
entity_description_embeddings = pd.read_parquet(
entity_description_embeddings_buffer
)
assert len(entity_description_embeddings.columns) == 2
assert "id" in entity_description_embeddings.columns
assert "embedding" in entity_description_embeddings.columns
# every other embedding is optional but we've turned them all on, so check a random one
document_text_embeddings_buffer = BytesIO(
await context.storage.get("embeddings.document.text.parquet", as_bytes=True)
)
document_text_embeddings = pd.read_parquet(document_text_embeddings_buffer)
assert len(document_text_embeddings.columns) == 2
assert "id" in document_text_embeddings.columns
assert "embedding" in document_text_embeddings.columns