mirror of
https://github.com/microsoft/graphrag.git
synced 2025-07-24 17:31:50 +00:00

* New workflow to generate embeddings in a single workflow * New workflow to generate embeddings in a single workflow * version change * clean tests without any embeddings references * clean tests without any embeddings references * remove code * feedback implemented * changes in logic * feedback implemented * store in table bug fixed * smoke test for generate_text_embeddings workflow * smoke test fix * add generate_text_embeddings to the list of transient workflows * smoke tests * fix * ruff formatting updates * fix * smoke test fixed * smoke test fixed * fix lancedb import * smoke test fix * ignore sorting * smoke test fixed * smoke test fixed * check smoke test * smoke test fixed * change config for vector store * format fix * vector store changes * revert debug profile back to empty filepath * merge conflict solved * merge conflict solved * format fixed * format fixed * fix return dataframe * snapshot fix * format fix * embeddings param implemented * validation fixes * fix map * fix map * fix properties * config updates * smoke test fixed * settings change * Update collection config and rework back-compat * Repalce . with - for embedding store --------- Co-authored-by: Alonso Guevara <alonsog@microsoft.com> Co-authored-by: Josh Bradley <joshbradley@microsoft.com> Co-authored-by: Nathan Evans <github@talkswithnumbers.com>
83 lines
2.4 KiB
Python
83 lines
2.4 KiB
Python
# Copyright (c) 2024 Microsoft Corporation.
|
|
# Licensed under the MIT License
|
|
|
|
from io import BytesIO
|
|
|
|
import pandas as pd
|
|
|
|
from graphrag.index.config.embeddings import (
|
|
all_embeddings,
|
|
)
|
|
from graphrag.index.run.utils import create_run_context
|
|
from graphrag.index.workflows.v1.generate_text_embeddings import (
|
|
build_steps,
|
|
workflow_name,
|
|
)
|
|
|
|
from .util import (
|
|
get_config_for_workflow,
|
|
get_workflow_output,
|
|
load_input_tables,
|
|
)
|
|
|
|
|
|
async def test_generate_text_embeddings():
|
|
input_tables = load_input_tables(
|
|
inputs=[
|
|
"workflow:create_final_documents",
|
|
"workflow:create_final_relationships",
|
|
"workflow:create_final_text_units",
|
|
"workflow:create_final_entities",
|
|
"workflow:create_final_community_reports",
|
|
]
|
|
)
|
|
context = create_run_context(None, None, None)
|
|
|
|
config = get_config_for_workflow(workflow_name)
|
|
|
|
config["text_embed"]["strategy"]["type"] = "mock"
|
|
config["snapshot_embeddings"] = True
|
|
|
|
config["embedded_fields"] = all_embeddings
|
|
|
|
steps = build_steps(config)
|
|
|
|
await get_workflow_output(
|
|
input_tables,
|
|
{
|
|
"steps": steps,
|
|
},
|
|
context,
|
|
)
|
|
|
|
parquet_files = context.storage.keys()
|
|
|
|
for field in all_embeddings:
|
|
assert f"embeddings.{field}.parquet" in parquet_files
|
|
|
|
# entity description should always be here, let's assert its format
|
|
entity_description_embeddings_buffer = BytesIO(
|
|
await context.storage.get(
|
|
"embeddings.entity.description.parquet", as_bytes=True
|
|
)
|
|
)
|
|
entity_description_embeddings = pd.read_parquet(
|
|
entity_description_embeddings_buffer
|
|
)
|
|
assert len(entity_description_embeddings.columns) == 2
|
|
assert "id" in entity_description_embeddings.columns
|
|
assert "embedding" in entity_description_embeddings.columns
|
|
|
|
# every other embedding is optional but we've turned them all on, so check a random one
|
|
document_raw_content_embeddings_buffer = BytesIO(
|
|
await context.storage.get(
|
|
"embeddings.document.raw_content.parquet", as_bytes=True
|
|
)
|
|
)
|
|
document_raw_content_embeddings = pd.read_parquet(
|
|
document_raw_content_embeddings_buffer
|
|
)
|
|
assert len(document_raw_content_embeddings.columns) == 2
|
|
assert "id" in document_raw_content_embeddings.columns
|
|
assert "embedding" in document_raw_content_embeddings.columns
|