mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-02-06 06:52:53 +00:00
105 lines
5.0 KiB
Plaintext
105 lines
5.0 KiB
Plaintext
|
|
---
|
|||
|
|
title: "VertexAIDocumentEmbedder"
|
|||
|
|
id: vertexaidocumentembedder
|
|||
|
|
slug: "/vertexaidocumentembedder"
|
|||
|
|
description: "This component computes embeddings for documents using models through VertexAI Embeddings API."
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
# VertexAIDocumentEmbedder
|
|||
|
|
|
|||
|
|
This component computes embeddings for documents using models through VertexAI Embeddings API.
|
|||
|
|
|
|||
|
|
:::warning
|
|||
|
|
Deprecation Notice
|
|||
|
|
|
|||
|
|
This integration uses the deprecated google-generativeai SDK, which will lose support after August 2025.
|
|||
|
|
|
|||
|
|
We recommend switching to the new [GoogleGenAIDocumentEmbedder](googlegenaidocumentembedder.mdx) integration instead.
|
|||
|
|
:::
|
|||
|
|
|
|||
|
|
| | |
|
|||
|
|
| -------------------------------------- | ----------------------------------------------------------------------------------------------- |
|
|||
|
|
| **Most common position in a pipeline** | Before a [DocumentWriter](../writers/documentwriter.mdx) in an indexing pipeline |
|
|||
|
|
| **Mandatory init variables** | "model": The model used through the VertexAI Embeddings API |
|
|||
|
|
| **Mandatory run variables** | “documents”: A list of documents to be embedded |
|
|||
|
|
| **Output variables** | “documents”: A list of documents enriched with embeddings |
|
|||
|
|
| **API reference** | [Google Vertex](/reference/integrations-google-vertex) |
|
|||
|
|
| **GitHub link** | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/google_vertex |
|
|||
|
|
|
|||
|
|
`VertexAIDocumentEmbedder` enriches the metadata of documents with an embedding of their content. To embed a string, use the [`VertexAITextEmbedder`](doc:vertexaitextembedder).
|
|||
|
|
|
|||
|
|
To use the `VertexAIDocumentEmbedder`, initialize it with:
|
|||
|
|
|
|||
|
|
- `model`: The supported models are:
|
|||
|
|
- "text-embedding-004"
|
|||
|
|
- "text-embedding-005"
|
|||
|
|
- "textembedding-gecko-multilingual@001"
|
|||
|
|
- "text-multilingual-embedding-002"
|
|||
|
|
- "text-embedding-large-exp-03-07"
|
|||
|
|
- `task_type`: "RETRIEVAL_DOCUMENT” is the default. You can find all task types in the official [Google documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#tasktype).
|
|||
|
|
|
|||
|
|
### Authentication
|
|||
|
|
|
|||
|
|
`VertexAIDocumentEmbedder` uses Google Cloud Application Default Credentials (ADCs) for authentication. For more information on how to set up ADCs, see the [official documentation](https://cloud.google.com/docs/authentication/provide-credentials-adc).
|
|||
|
|
|
|||
|
|
Keep in mind that it’s essential to use an account that has access to a project authorized to use Google Vertex AI endpoints.
|
|||
|
|
|
|||
|
|
You can find your project ID in the [GCP resource manager](https://console.cloud.google.com/cloud-resource-manager) or locally by running `gcloud projects list` in your terminal. For more info on the gcloud CLI, see its [official documentation](https://cloud.google.com/cli).
|
|||
|
|
|
|||
|
|
## Usage
|
|||
|
|
|
|||
|
|
Install the `google-vertex-haystack` package to use this Embedder:
|
|||
|
|
|
|||
|
|
```shell
|
|||
|
|
pip install google-vertex-haystack
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
### On its own
|
|||
|
|
|
|||
|
|
```python
|
|||
|
|
from haystack import Document
|
|||
|
|
from haystack_integrations.components.embedders.google_vertex import VertexAIDocumentEmbedder
|
|||
|
|
|
|||
|
|
doc = Document(content="I love pizza!")
|
|||
|
|
|
|||
|
|
document_embedder = VertexAIDocumentEmbedder(model="text-embedding-005")
|
|||
|
|
|
|||
|
|
result = document_embedder.run([doc])
|
|||
|
|
print(result['documents'][0].embedding)
|
|||
|
|
## [-0.044606007635593414, 0.02857724390923977, -0.03549133986234665,
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
### In a pipeline
|
|||
|
|
|
|||
|
|
```python
|
|||
|
|
from haystack import Document
|
|||
|
|
from haystack import Pipeline
|
|||
|
|
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
|||
|
|
from haystack_integrations.components.embedders.google_vertex import VertexAITextEmbedder
|
|||
|
|
from haystack_integrations.components.embedders.google_vertex import VertexAIDocumentEmbedder
|
|||
|
|
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
|||
|
|
|
|||
|
|
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
|
|||
|
|
|
|||
|
|
documents = [Document(content="My name is Wolfgang and I live in Berlin"),
|
|||
|
|
Document(content="I saw a black horse running"),
|
|||
|
|
Document(content="Germany has many big cities")]
|
|||
|
|
|
|||
|
|
document_embedder = VertexAIDocumentEmbedder(model="text-embedding-005")
|
|||
|
|
documents_with_embeddings = document_embedder.run(documents)['documents']
|
|||
|
|
document_store.write_documents(documents_with_embeddings)
|
|||
|
|
|
|||
|
|
query_pipeline = Pipeline()
|
|||
|
|
query_pipeline.add_component("text_embedder", VertexAITextEmbedder(model="text-embedding-005"))
|
|||
|
|
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
|
|||
|
|
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
|||
|
|
|
|||
|
|
query = "Who lives in Berlin?"
|
|||
|
|
|
|||
|
|
result = query_pipeline.run({"text_embedder":{"text": query}})
|
|||
|
|
|
|||
|
|
print(result['retriever']['documents'][0])
|
|||
|
|
|
|||
|
|
## Document(id=..., content: 'My name is Wolfgang and I live in Berlin')
|
|||
|
|
```
|