haystack/test/evaluation/test_eval_f1.py

179 lines
6.4 KiB
Python
Raw Normal View History

import pytest
from haystack import Pipeline
from haystack.dataclasses import GeneratedAnswer
from haystack.evaluation.eval import EvaluationResult
class TestF1:
def create_evaluation_result(self, predictions, labels):
"""
Creates an evaluation result of a RAG pipeline using the list of predictions and labels for testing the f1.
"""
runnable = Pipeline()
inputs = []
outputs = [
{"answer_builder": {"answers": [GeneratedAnswer(data=pred, query="", documents=[], meta={})]}}
for pred in predictions
]
expected_outputs = [
{"answer_builder": {"answers": [GeneratedAnswer(data=label, query="", documents=[], meta={})]}}
for label in labels
]
evaluation_result = EvaluationResult(runnable, inputs, outputs, expected_outputs)
return evaluation_result
def test_f1_empty_inputs(self):
"""
Test f1 with empty inputs
"""
runnable = Pipeline()
inputs = []
outputs = [
{"answer_builder": {"answers": []}},
{"answer_builder": {"answers": []}},
{"answer_builder": {"answers": []}},
]
expected_outputs = [
{"answer_builder": {"answers": []}},
{"answer_builder": {"answers": []}},
{"answer_builder": {"answers": []}},
]
evaluation_result = EvaluationResult(runnable, inputs, outputs, expected_outputs)
# Expecting 0% f1 for empty inputs
f1_result = evaluation_result._calculate_f1(output_key="answers")
assert f1_result["f1"] == 0.0
def test_calculate_f1_with_different_lengths(self):
"""
Test f1 with default parameters
"""
predictions = ["OpenSource", "HaystackAI", "LLMs"]
labels = ["OpenSource", "HaystackAI"]
evaluation_result = self.create_evaluation_result(predictions, labels)
with pytest.raises(ValueError, match="The number of predictions and labels must be the same."):
evaluation_result._calculate_f1(output_key="answers")
def test_f1_same_inputs(self):
"""
Test f1 with default parameters
"""
predictions = ["OpenSource", "HaystackAI", "LLMs"]
labels = ["OpenSource", "HaystackAI", "LLMs"]
evaluation_result = self.create_evaluation_result(predictions, labels)
f1_result = evaluation_result._calculate_f1(output_key="answers")
assert f1_result["f1"] == 1.0
def test_f1_single_word(self):
"""
Test f1 with single-word inputs
"""
predictions = ["Open Source"]
labels = ["Source"]
evaluation_result = self.create_evaluation_result(predictions, labels)
f1_result = evaluation_result._calculate_f1(output_key="answers")
assert f1_result["f1"] == pytest.approx(2 / 3)
def test_f1_negative_case(self):
"""
Test f1 with deliberately mismatched predictions and labels
"""
predictions = ["Open Source", "HaystackAI"]
labels = ["Source", "HaystackAI"]
evaluation_result = self.create_evaluation_result(predictions, labels)
f1_result = evaluation_result._calculate_f1(output_key="answers")
assert f1_result["f1"] == pytest.approx(5 / 6)
def test_f1_ignore_case(self):
"""
Test f1 with ignoring case sensitivity
"""
predictions = ["Open Source", "HaystackAI"]
labels = ["source", "HAYSTACKAI"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# F1 after case ignoring
f1_result = evaluation_result._calculate_f1(output_key="answers", ignore_case=True)
assert f1_result["f1"] == pytest.approx(5 / 6)
def test_f1_ignore_punctuation(self):
"""
Test f1 with ignoring punctuation
"""
predictions = ["Open Source!", "Haystack.AI"]
labels = ["Source", "HaystackAI"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# F1 after ignoring punctuation
f1_result = evaluation_result._calculate_f1(output_key="answers", ignore_punctuation=True)
assert f1_result["f1"] == pytest.approx(5 / 6)
def test_f1_ignore_numbers(self):
"""
Test f1 with ignoring numbers
"""
predictions = ["Open Source123", "HaystackAI"]
labels = ["Source", "HaystackAI"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# F1 after ignoring numbers
f1_result = evaluation_result._calculate_f1(output_key="answers", ignore_numbers=True)
assert f1_result["f1"] == pytest.approx(5 / 6)
def test_f1_regex_ignore(self):
"""
Test f1 with ignoring specific regex patterns
"""
predictions = ["Open123 Source", "HaystackAI"]
labels = ["Source", "HaystackAI"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Ignore numeric patterns
regex_to_ignore = [r"\d+"]
f1_result = evaluation_result._calculate_f1(output_key="answers", regexes_to_ignore=regex_to_ignore)
assert f1_result["f1"] == pytest.approx(5 / 6)
def test_f1_multiple_ignore_regex(self):
"""
Test f1 with multiple ignoring parameters
"""
predictions = ["Open123! Source", "Haystack.AI"]
labels = ["Source", "HaystackAI"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Ignore numeric patterns and punctuation excluding whitespaces
regex_to_ignore = [r"\d+", r"[^\w\s]"]
f1_result = evaluation_result._calculate_f1(output_key="answers", regexes_to_ignore=regex_to_ignore)
assert f1_result["f1"] == pytest.approx(5 / 6)
def test_f1_multiple_ignore_combination(self):
"""
Test f1 with multiple ignoring parameters combined
"""
predictions = ["Open%123. !$Source", "Haystack.AI##"]
labels = ["Source", "HaystackAI"]
evaluation_result = self.create_evaluation_result(predictions, labels)
# Ignore only special characters using regex
regex_to_ignore = [r"[^\w\s\d]+"]
f1_result = evaluation_result._calculate_f1(
output_key="answers",
ignore_numbers=True,
ignore_punctuation=True,
ignore_case=True,
regexes_to_ignore=regex_to_ignore,
)
assert f1_result["f1"] == pytest.approx(5 / 6)