haystack/test/preview/document_stores/test_in_memory.py

401 lines
18 KiB
Python
Raw Normal View History

import logging
from unittest.mock import patch
import numpy as np
import pandas as pd
import pytest
from haystack.preview import Document
from haystack.preview.document_stores import DocumentStore, InMemoryDocumentStore, DocumentStoreError
2023-08-14 16:35:34 +02:00
from haystack.preview.testing.document_store import DocumentStoreBaseTests
class TestMemoryDocumentStore(DocumentStoreBaseTests):
"""
Test InMemoryDocumentStore's specific features
"""
@pytest.fixture
def docstore(self) -> InMemoryDocumentStore:
return InMemoryDocumentStore()
@pytest.mark.unit
def test_to_dict(self):
store = InMemoryDocumentStore()
data = store.to_dict()
assert data == {
"type": "InMemoryDocumentStore",
"init_parameters": {
"bm25_tokenization_regex": r"(?u)\b\w\w+\b",
"bm25_algorithm": "BM25Okapi",
"bm25_parameters": {},
"embedding_similarity_function": "dot_product",
},
}
@pytest.mark.unit
def test_to_dict_with_custom_init_parameters(self):
store = InMemoryDocumentStore(
bm25_tokenization_regex="custom_regex",
bm25_algorithm="BM25Plus",
bm25_parameters={"key": "value"},
embedding_similarity_function="cosine",
)
data = store.to_dict()
assert data == {
"type": "InMemoryDocumentStore",
"init_parameters": {
"bm25_tokenization_regex": "custom_regex",
"bm25_algorithm": "BM25Plus",
"bm25_parameters": {"key": "value"},
"embedding_similarity_function": "cosine",
},
}
@pytest.mark.unit
@patch("haystack.preview.document_stores.in_memory.document_store.re")
def test_from_dict(self, mock_regex):
data = {
"type": "InMemoryDocumentStore",
"init_parameters": {
"bm25_tokenization_regex": "custom_regex",
"bm25_algorithm": "BM25Plus",
"bm25_parameters": {"key": "value"},
},
}
store = InMemoryDocumentStore.from_dict(data)
mock_regex.compile.assert_called_with("custom_regex")
assert store.tokenizer
assert store.bm25_algorithm.__name__ == "BM25Plus"
assert store.bm25_parameters == {"key": "value"}
@pytest.mark.unit
def test_bm25_retrieval(self, docstore: DocumentStore):
docstore = InMemoryDocumentStore()
# Tests if the bm25_retrieval method returns the correct document based on the input query.
docs = [Document(text="Hello world"), Document(text="Haystack supports multiple languages")]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="What languages?", top_k=1)
assert len(results) == 1
assert results[0].text == "Haystack supports multiple languages"
@pytest.mark.unit
def test_bm25_retrieval_with_empty_document_store(self, docstore: DocumentStore, caplog):
caplog.set_level(logging.INFO)
# Tests if the bm25_retrieval method correctly returns an empty list when there are no documents in the DocumentStore.
results = docstore.bm25_retrieval(query="How to test this?", top_k=2)
assert len(results) == 0
assert "No documents found for BM25 retrieval. Returning empty list." in caplog.text
@pytest.mark.unit
def test_bm25_retrieval_empty_query(self, docstore: DocumentStore):
# Tests if the bm25_retrieval method returns a document when the query is an empty string.
docs = [Document(text="Hello world"), Document(text="Haystack supports multiple languages")]
docstore.write_documents(docs)
with pytest.raises(ValueError, match="Query should be a non-empty string"):
docstore.bm25_retrieval(query="", top_k=1)
@pytest.mark.unit
def test_bm25_retrieval_with_different_top_k(self, docstore: DocumentStore):
# Tests if the bm25_retrieval method correctly changes the number of returned documents
# based on the top_k parameter.
docs = [
Document(text="Hello world"),
Document(text="Haystack supports multiple languages"),
Document(text="Python is a popular programming language"),
]
docstore.write_documents(docs)
# top_k = 2
results = docstore.bm25_retrieval(query="languages", top_k=2)
assert len(results) == 2
# top_k = 3
results = docstore.bm25_retrieval(query="languages", top_k=3)
assert len(results) == 3
# Test two queries and make sure the results are different
@pytest.mark.unit
def test_bm25_retrieval_with_two_queries(self, docstore: DocumentStore):
# Tests if the bm25_retrieval method returns different documents for different queries.
docs = [
Document(text="Javascript is a popular programming language"),
Document(text="Java is a popular programming language"),
Document(text="Python is a popular programming language"),
Document(text="Ruby is a popular programming language"),
Document(text="PHP is a popular programming language"),
]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="Java", top_k=1)
assert results[0].text == "Java is a popular programming language"
results = docstore.bm25_retrieval(query="Python", top_k=1)
assert results[0].text == "Python is a popular programming language"
@pytest.mark.skip(reason="Filter is not working properly, see https://github.com/deepset-ai/haystack/issues/6153")
def test_eq_filter_embedding(self, docstore: DocumentStore, filterable_docs):
pass
# Test a query, add a new document and make sure results are appropriately updated
@pytest.mark.unit
def test_bm25_retrieval_with_updated_docs(self, docstore: DocumentStore):
# Tests if the bm25_retrieval method correctly updates the retrieved documents when new
# documents are added to the DocumentStore.
docs = [Document(text="Hello world")]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="Python", top_k=1)
assert len(results) == 1
docstore.write_documents([Document(text="Python is a popular programming language")])
results = docstore.bm25_retrieval(query="Python", top_k=1)
assert len(results) == 1
assert results[0].text == "Python is a popular programming language"
docstore.write_documents([Document(text="Java is a popular programming language")])
results = docstore.bm25_retrieval(query="Python", top_k=1)
assert len(results) == 1
assert results[0].text == "Python is a popular programming language"
@pytest.mark.unit
def test_bm25_retrieval_with_scale_score(self, docstore: DocumentStore):
docs = [Document(text="Python programming"), Document(text="Java programming")]
docstore.write_documents(docs)
results1 = docstore.bm25_retrieval(query="Python", top_k=1, scale_score=True)
# Confirm that score is scaled between 0 and 1
assert 0 <= results1[0].score <= 1
# Same query, different scale, scores differ when not scaled
results = docstore.bm25_retrieval(query="Python", top_k=1, scale_score=False)
assert results[0].score != results1[0].score
@pytest.mark.unit
def test_bm25_retrieval_with_table_content(self, docstore: DocumentStore):
# Tests if the bm25_retrieval method correctly returns a dataframe when the content_type is table.
table_content = pd.DataFrame({"language": ["Python", "Java"], "use": ["Data Science", "Web Development"]})
docs = [Document(dataframe=table_content), Document(text="Gardening"), Document(text="Bird watching")]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="Java", top_k=1)
assert len(results) == 1
df = results[0].dataframe
assert isinstance(df, pd.DataFrame)
assert df.equals(table_content)
@pytest.mark.unit
def test_bm25_retrieval_with_text_and_table_content(self, docstore: DocumentStore, caplog):
table_content = pd.DataFrame({"language": ["Python", "Java"], "use": ["Data Science", "Web Development"]})
document = Document(text="Gardening", dataframe=table_content)
docs = [
document,
Document(text="Python"),
Document(text="Bird Watching"),
Document(text="Gardening"),
Document(text="Java"),
]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="Gardening", top_k=2)
assert document in results
assert "both text and dataframe content" in caplog.text
results = docstore.bm25_retrieval(query="Python", top_k=2)
assert document not in results
@pytest.mark.unit
def test_bm25_retrieval_default_filter_for_text_and_dataframes(self, docstore: DocumentStore):
docs = [
Document(array=np.array([1, 2, 3])),
Document(text="Gardening", array=np.array([1, 2, 3])),
Document(text="Bird watching"),
]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="doesn't matter, top_k is 10", top_k=10)
assert len(results) == 2
@pytest.mark.unit
def test_bm25_retrieval_with_filters(self, docstore: DocumentStore):
selected_document = Document(text="Gardening", array=np.array([1, 2, 3]), metadata={"selected": True})
docs = [Document(array=np.array([1, 2, 3])), selected_document, Document(text="Bird watching")]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="Java", top_k=10, filters={"selected": True})
assert results == [selected_document]
@pytest.mark.unit
def test_bm25_retrieval_with_filters_keeps_default_filters(self, docstore: DocumentStore):
docs = [
Document(array=np.array([1, 2, 3]), metadata={"selected": True}),
Document(text="Gardening", array=np.array([1, 2, 3])),
Document(text="Bird watching"),
]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="Java", top_k=10, filters={"selected": True})
assert not len(results)
@pytest.mark.unit
def test_bm25_retrieval_with_filters_on_text_or_dataframe(self, docstore: DocumentStore):
document = Document(dataframe=pd.DataFrame({"language": ["Python", "Java"], "use": ["Data Science", "Web"]}))
docs = [
Document(array=np.array([1, 2, 3])),
Document(text="Gardening"),
Document(text="Bird watching"),
document,
]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="Java", top_k=10, filters={"text": None})
assert results == [document]
@pytest.mark.unit
def test_bm25_retrieval_with_documents_with_mixed_content(self, docstore: DocumentStore):
double_document = Document(text="Gardening", array=np.array([1, 2, 3]))
docs = [Document(array=np.array([1, 2, 3])), double_document, Document(text="Bird watching")]
docstore.write_documents(docs)
results = docstore.bm25_retrieval(query="Java", top_k=10, filters={"array": {"$not": None}})
assert results == [double_document]
@pytest.mark.unit
def test_embedding_retrieval(self):
docstore = InMemoryDocumentStore(embedding_similarity_function="cosine")
# Tests if the embedding retrieval method returns the correct document based on the input query embedding.
docs = [
Document(text="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]),
Document(text="Haystack supports multiple languages", embedding=[1.0, 1.0, 1.0, 1.0]),
]
docstore.write_documents(docs)
results = docstore.embedding_retrieval(
query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, filters={}, scale_score=False
)
assert len(results) == 1
assert results[0].text == "Haystack supports multiple languages"
@pytest.mark.unit
def test_embedding_retrieval_invalid_query(self):
docstore = InMemoryDocumentStore()
with pytest.raises(ValueError, match="query_embedding should be a non-empty list of floats"):
docstore.embedding_retrieval(query_embedding=[])
with pytest.raises(ValueError, match="query_embedding should be a non-empty list of floats"):
docstore.embedding_retrieval(query_embedding=["invalid", "list", "of", "strings"])
@pytest.mark.unit
def test_embedding_retrieval_no_embeddings(self, caplog):
caplog.set_level(logging.WARNING)
docstore = InMemoryDocumentStore()
docs = [Document(text="Hello world"), Document(text="Haystack supports multiple languages")]
docstore.write_documents(docs)
results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1])
assert len(results) == 0
assert "No Documents found with embeddings. Returning empty list." in caplog.text
@pytest.mark.unit
def test_embedding_retrieval_some_documents_wo_embeddings(self, caplog):
caplog.set_level(logging.INFO)
docstore = InMemoryDocumentStore()
docs = [
Document(text="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]),
Document(text="Haystack supports multiple languages"),
]
docstore.write_documents(docs)
docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1])
assert "Skipping some Documents that don't have an embedding." in caplog.text
@pytest.mark.unit
def test_embedding_retrieval_documents_different_embedding_sizes(self):
docstore = InMemoryDocumentStore()
docs = [
Document(text="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]),
Document(text="Haystack supports multiple languages", embedding=np.array([1.0, 1.0])),
]
docstore.write_documents(docs)
with pytest.raises(DocumentStoreError, match="The embedding size of all Documents should be the same."):
docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1])
@pytest.mark.unit
def test_embedding_retrieval_query_documents_different_embedding_sizes(self):
docstore = InMemoryDocumentStore()
docs = [Document(text="Hello world", embedding=[0.1, 0.2, 0.3, 0.4])]
docstore.write_documents(docs)
with pytest.raises(
DocumentStoreError,
match="The embedding size of the query should be the same as the embedding size of the Documents.",
):
docstore.embedding_retrieval(query_embedding=[0.1, 0.1])
@pytest.mark.unit
def test_embedding_retrieval_with_different_top_k(self):
docstore = InMemoryDocumentStore()
docs = [
Document(text="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]),
Document(text="Haystack supports multiple languages", embedding=[1.0, 1.0, 1.0, 1.0]),
Document(text="Python is a popular programming language", embedding=[0.5, 0.5, 0.5, 0.5]),
]
docstore.write_documents(docs)
results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=2)
assert len(results) == 2
results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=3)
assert len(results) == 3
@pytest.mark.unit
def test_embedding_retrieval_with_scale_score(self):
docstore = InMemoryDocumentStore()
docs = [
Document(text="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]),
Document(text="Haystack supports multiple languages", embedding=[1.0, 1.0, 1.0, 1.0]),
Document(text="Python is a popular programming language", embedding=[0.5, 0.5, 0.5, 0.5]),
]
docstore.write_documents(docs)
results1 = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, scale_score=True)
# Confirm that score is scaled between 0 and 1
assert 0 <= results1[0].score <= 1
# Same query, different scale, scores differ when not scaled
results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, scale_score=False)
assert results[0].score != results1[0].score
@pytest.mark.unit
def test_embedding_retrieval_return_embedding(self):
docstore = InMemoryDocumentStore(embedding_similarity_function="cosine")
docs = [
Document(text="Hello world", embedding=[0.1, 0.2, 0.3, 0.4]),
Document(text="Haystack supports multiple languages", embedding=[1.0, 1.0, 1.0, 1.0]),
]
docstore.write_documents(docs)
results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, return_embedding=False)
assert results[0].embedding is None
results = docstore.embedding_retrieval(query_embedding=[0.1, 0.1, 0.1, 0.1], top_k=1, return_embedding=True)
assert results[0].embedding == [1.0, 1.0, 1.0, 1.0]
@pytest.mark.unit
def test_compute_cosine_similarity_scores(self):
docstore = InMemoryDocumentStore(embedding_similarity_function="cosine")
docs = [
Document(text="Document 1", embedding=[1.0, 0.0, 0.0, 0.0]),
Document(text="Document 2", embedding=[1.0, 1.0, 1.0, 1.0]),
]
scores = docstore._compute_query_embedding_similarity_scores(
embedding=[0.1, 0.1, 0.1, 0.1], documents=docs, scale_score=False
)
assert scores == [0.5, 1.0]
@pytest.mark.unit
def test_compute_dot_product_similarity_scores(self):
docstore = InMemoryDocumentStore(embedding_similarity_function="dot_product")
docs = [
Document(text="Document 1", embedding=[1.0, 0.0, 0.0, 0.0]),
Document(text="Document 2", embedding=[1.0, 1.0, 1.0, 1.0]),
]
scores = docstore._compute_query_embedding_similarity_scores(
embedding=[0.1, 0.1, 0.1, 0.1], documents=docs, scale_score=False
)
assert scores == [0.1, 0.4]