| API reference | [Pgvector](/reference/integrations-pgvector) |
| GitHub link | https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/pgvector/ |
</div>
Pgvector is an extension for PostgreSQL that enhances its capabilities with vector similarity search. It builds upon the classic features of PostgreSQL, such as ACID compliance and point-in-time recovery, and introduces the ability to perform exact and approximate nearest neighbor search using vectors.
For more information, see the [pgvector repository](https://github.com/pgvector/pgvector).
Pgvector Document Store supports embedding retrieval and metadata filtering.
## Installation
To quickly set up a PostgreSQL database with pgvector, you can use Docker:
When using the URI format, special characters in the password must be [percent-encoded](https://en.wikipedia.org/wiki/Percent-encoding). Otherwise, connection errors may occur. A password like `p=ssword` would cause the error `psycopg.OperationalError: [Errno -2] Name or service not known`.
For example, if your password is `p=ssword`, the connection string should be:
Initialize a `PgvectorDocumentStore` object that’s connected to the PostgreSQL database and writes documents to it:
```python
from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore
from haystack import Document
document_store = PgvectorDocumentStore(
embedding_dimension=768,
vector_function="cosine_similarity",
recreate_table=True,
search_strategy="hnsw",
)
document_store.write_documents([
Document(content="This is first", embedding=[0.1]*768),
Document(content="This is second", embedding=[0.3]*768)
])
print(document_store.count_documents())
```
To learn more about the initialization parameters, see our [API docs](/reference/integrations-pgvector#pgvectordocumentstore).
To properly compute embeddings for your documents, you can use a Document Embedder (for instance, the [`SentenceTransformersDocumentEmbedder`](../pipeline-components/embedders/sentencetransformersdocumentembedder.mdx)).
### Supported Retrievers
- [`PgvectorEmbeddingRetriever`](../pipeline-components/retrievers/pgvectorembeddingretriever.mdx): An embedding-based Retriever that fetches documents from the Document Store based on a query embedding provided to the Retriever.
- [`PgvectorKeywordRetriever`](../pipeline-components/retrievers/pgvectorembeddingretriever.mdx): A keyword-based Retriever that fetches documents matching a query from the Pgvector Document Store.