haystack/test/components/joiners/test_list_joiner.py

151 lines
6.4 KiB
Python
Raw Normal View History

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
from typing import List
import pytest
from haystack import Document, Pipeline
from haystack.components.builders import AnswerBuilder, ChatPromptBuilder
from haystack.components.embedders import SentenceTransformersTextEmbedder
from haystack.components.generators.chat.openai import OpenAIChatGenerator
from haystack.components.joiners.list_joiner import ListJoiner
from haystack.core.errors import PipelineConnectError
from haystack.dataclasses import ChatMessage
from haystack.dataclasses.answer import GeneratedAnswer
from haystack.utils.auth import Secret
class TestListJoiner:
def test_init(self):
joiner = ListJoiner(List[ChatMessage])
assert isinstance(joiner, ListJoiner)
assert joiner.list_type_ == List[ChatMessage]
def test_to_dict_defaults(self):
joiner = ListJoiner()
data = joiner.to_dict()
assert data == {
"type": "haystack.components.joiners.list_joiner.ListJoiner",
"init_parameters": {"list_type_": None},
}
def test_to_dict_non_default(self):
joiner = ListJoiner(List[ChatMessage])
data = joiner.to_dict()
assert data == {
"type": "haystack.components.joiners.list_joiner.ListJoiner",
"init_parameters": {"list_type_": "typing.List[haystack.dataclasses.chat_message.ChatMessage]"},
}
def test_from_dict_default(self):
data = {"type": "haystack.components.joiners.list_joiner.ListJoiner", "init_parameters": {"list_type_": None}}
list_joiner = ListJoiner.from_dict(data)
assert isinstance(list_joiner, ListJoiner)
assert list_joiner.list_type_ is None
def test_from_dict_non_default(self):
data = {
"type": "haystack.components.joiners.list_joiner.ListJoiner",
"init_parameters": {"list_type_": "typing.List[haystack.dataclasses.chat_message.ChatMessage]"},
}
list_joiner = ListJoiner.from_dict(data)
assert isinstance(list_joiner, ListJoiner)
assert list_joiner.list_type_ == List[ChatMessage]
def test_empty_list(self):
joiner = ListJoiner(List[ChatMessage])
result = joiner.run([])
assert result == {"values": []}
def test_list_of_empty_lists(self):
joiner = ListJoiner(List[ChatMessage])
result = joiner.run([[], []])
assert result == {"values": []}
def test_single_list_of_chat_messages(self):
joiner = ListJoiner(List[ChatMessage])
messages = [ChatMessage.from_user("Hello"), ChatMessage.from_assistant("Hi there")]
result = joiner.run([messages])
assert result == {"values": messages}
def test_multiple_lists_of_chat_messages(self):
joiner = ListJoiner(List[ChatMessage])
messages1 = [ChatMessage.from_user("Hello")]
messages2 = [ChatMessage.from_assistant("Hi there")]
messages3 = [ChatMessage.from_system("System message")]
result = joiner.run([messages1, messages2, messages3])
assert result == {"values": messages1 + messages2 + messages3}
def test_list_of_generated_answers(self):
joiner = ListJoiner(List[GeneratedAnswer])
answers1 = [GeneratedAnswer(query="q1", data="a1", meta={}, documents=[Document(content="d1")])]
answers2 = [GeneratedAnswer(query="q2", data="a2", meta={}, documents=[Document(content="d2")])]
result = joiner.run([answers1, answers2])
assert result == {"values": answers1 + answers2}
def test_list_two_different_types(self):
joiner = ListJoiner()
result = joiner.run([["a", "b"], [1, 2]])
assert result == {"values": ["a", "b", 1, 2]}
def test_mixed_empty_and_non_empty_lists(self):
joiner = ListJoiner(List[ChatMessage])
messages = [ChatMessage.from_user("Hello")]
result = joiner.run([messages, [], messages])
assert result == {"values": messages + messages}
def test_pipeline_connection_validation(self):
joiner = ListJoiner()
llm = OpenAIChatGenerator(model="gpt-4o-mini", api_key=Secret.from_token("test-api-key"))
pipe = Pipeline()
pipe.add_component("joiner", joiner)
pipe.add_component("llm", llm)
with pytest.raises(PipelineConnectError):
pipe.connect("joiner.values", "llm.messages")
assert pipe is not None
def test_pipeline_connection_validation_list_chatmessage(self):
joiner = ListJoiner(List[ChatMessage])
llm = OpenAIChatGenerator(model="gpt-4o-mini", api_key=Secret.from_token("test-api-key"))
pipe = Pipeline()
pipe.add_component("joiner", joiner)
pipe.add_component("llm", llm)
pipe.connect("joiner", "llm.messages")
assert pipe is not None
def test_pipeline_bad_connection(self):
with pytest.raises(PipelineConnectError):
joiner = ListJoiner()
query_embedder = SentenceTransformersTextEmbedder()
pipe = Pipeline()
pipe.add_component("joiner", joiner)
pipe.add_component("query_embedder", query_embedder)
pipe.connect("joiner.values", "query_embedder.text")
def test_pipeline_bad_connection_different_list_types(self):
with pytest.raises(PipelineConnectError):
joiner = ListJoiner(List[str])
llm = OpenAIChatGenerator(model="gpt-4o-mini", api_key=Secret.from_token("test-api-key"))
pipe = Pipeline()
pipe.add_component("joiner", joiner)
pipe.add_component("llm", llm)
pipe.connect("joiner.values", "llm.messages")
def test_result_two_different_types(self):
pipe = Pipeline()
pipe.add_component("answer_builder", AnswerBuilder())
pipe.add_component("chat_prompt_builder", ChatPromptBuilder())
pipe.add_component("joiner", ListJoiner())
pipe.connect("answer_builder", "joiner.values")
pipe.connect("chat_prompt_builder", "joiner.values")
result = pipe.run(
data={
"answer_builder": {"query": "What is nuclear physics?", "replies": ["This is an answer."]},
"chat_prompt_builder": {"template": [ChatMessage.from_user("Hello")]},
}
)
assert isinstance(result["joiner"]["values"][0], GeneratedAnswer)
assert isinstance(result["joiner"]["values"][1], ChatMessage)