haystack/test/evaluation/test_eval_run_result.py

199 lines
10 KiB
Python
Raw Normal View History

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
from haystack.evaluation import EvaluationRunResult
import pytest
def test_init_results_evaluator():
data = {
"inputs": {
"query_id": ["53c3b3e6", "225f87f7"],
"question": ["What is the capital of France?", "What is the capital of Spain?"],
"contexts": ["wiki_France", "wiki_Spain"],
"answer": ["Paris", "Madrid"],
"predicted_answer": ["Paris", "Madrid"],
},
"metrics": {
"reciprocal_rank": {"individual_scores": [0.378064, 0.534964], "score": 0.476932},
"single_hit": {"individual_scores": [1, 1], "score": 0.75},
"multi_hit": {"individual_scores": [0.706125, 0.454976], "score": 0.46428375},
"context_relevance": {"individual_scores": [0.805466, 0.410251], "score": 0.58177975},
"faithfulness": {"individual_scores": [0.135581, 0.695974], "score": 0.40585375},
"semantic_answer_similarity": {"individual_scores": [0.971241, 0.159320], "score": 0.53757075},
},
}
_ = EvaluationRunResult("testing_pipeline_1", inputs=data["inputs"], results=data["metrics"])
with pytest.raises(ValueError, match="No inputs provided"):
_ = EvaluationRunResult("testing_pipeline_1", inputs={}, results={})
with pytest.raises(ValueError, match="Lengths of the inputs should be the same"):
_ = EvaluationRunResult(
"testing_pipeline_1",
inputs={"query_id": ["53c3b3e6", "something else"], "question": ["What is the capital of France?"]},
results={"some": {"score": 0.1, "individual_scores": [0.378064, 0.534964]}},
)
with pytest.raises(ValueError, match="Aggregate score missing"):
_ = EvaluationRunResult(
"testing_pipeline_1",
inputs={
"query_id": ["53c3b3e6", "something else"],
"question": ["What is the capital of France?", "another"],
},
results={"some": {"individual_scores": [0.378064, 0.534964]}},
)
with pytest.raises(ValueError, match="Individual scores missing"):
_ = EvaluationRunResult(
"testing_pipeline_1",
inputs={
"query_id": ["53c3b3e6", "something else"],
"question": ["What is the capital of France?", "another"],
},
results={"some": {"score": 0.378064}},
)
with pytest.raises(ValueError, match="Length of individual scores .* should be the same as the inputs"):
_ = EvaluationRunResult(
"testing_pipeline_1",
inputs={
"query_id": ["53c3b3e6", "something else"],
"question": ["What is the capital of France?", "another"],
},
results={"some": {"score": 0.1, "individual_scores": [0.378064, 0.534964, 0.3]}},
)
def test_score_report():
data = {
"inputs": {
"query_id": ["53c3b3e6", "225f87f7"],
"question": ["What is the capital of France?", "What is the capital of Spain?"],
"contexts": ["wiki_France", "wiki_Spain"],
"answer": ["Paris", "Madrid"],
"predicted_answer": ["Paris", "Madrid"],
},
"metrics": {
"reciprocal_rank": {"individual_scores": [0.378064, 0.534964], "score": 0.476932},
"single_hit": {"individual_scores": [1, 1], "score": 0.75},
"multi_hit": {"individual_scores": [0.706125, 0.454976], "score": 0.46428375},
"context_relevance": {"individual_scores": [0.805466, 0.410251], "score": 0.58177975},
"faithfulness": {"individual_scores": [0.135581, 0.695974], "score": 0.40585375},
"semantic_answer_similarity": {"individual_scores": [0.971241, 0.159320], "score": 0.53757075},
},
}
result = EvaluationRunResult("testing_pipeline_1", inputs=data["inputs"], results=data["metrics"])
report = result.score_report().to_json()
assert report == (
'{"metrics":{"0":"reciprocal_rank","1":"single_hit","2":"multi_hit","3":"context_relevance",'
'"4":"faithfulness","5":"semantic_answer_similarity"},'
'"score":{"0":0.476932,"1":0.75,"2":0.46428375,"3":0.58177975,"4":0.40585375,"5":0.53757075}}'
)
def test_to_pandas():
data = {
"inputs": {
"query_id": ["53c3b3e6", "225f87f7", "53c3b3e6", "225f87f7"],
"question": [
"What is the capital of France?",
"What is the capital of Spain?",
"What is the capital of Luxembourg?",
"What is the capital of Portugal?",
],
"contexts": ["wiki_France", "wiki_Spain", "wiki_Luxembourg", "wiki_Portugal"],
"answer": ["Paris", "Madrid", "Luxembourg", "Lisbon"],
"predicted_answer": ["Paris", "Madrid", "Luxembourg", "Lisbon"],
},
"metrics": {
"reciprocal_rank": {"score": 0.1, "individual_scores": [0.378064, 0.534964, 0.216058, 0.778642]},
"single_hit": {"score": 0.1, "individual_scores": [1, 1, 0, 1]},
"multi_hit": {"score": 0.1, "individual_scores": [0.706125, 0.454976, 0.445512, 0.250522]},
"context_relevance": {"score": 0.1, "individual_scores": [0.805466, 0.410251, 0.750070, 0.361332]},
"faithfulness": {"score": 0.1, "individual_scores": [0.135581, 0.695974, 0.749861, 0.041999]},
"semantic_answer_similarity": {"score": 0.1, "individual_scores": [0.971241, 0.159320, 0.019722, 1]},
},
}
result = EvaluationRunResult("testing_pipeline_1", inputs=data["inputs"], results=data["metrics"])
assert result.to_pandas().to_json() == (
'{"query_id":{"0":"53c3b3e6","1":"225f87f7","2":"53c3b3e6","3":"225f87f7"},'
'"question":{"0":"What is the capital of France?","1":"What is the capital of Spain?",'
'"2":"What is the capital of Luxembourg?","3":"What is the capital of Portugal?"},'
'"contexts":{"0":"wiki_France","1":"wiki_Spain","2":"wiki_Luxembourg","3":"wiki_Portugal"},'
'"answer":{"0":"Paris","1":"Madrid","2":"Luxembourg","3":"Lisbon"},'
'"predicted_answer":{"0":"Paris","1":"Madrid","2":"Luxembourg","3":"Lisbon"},'
'"reciprocal_rank":{"0":0.378064,"1":0.534964,"2":0.216058,"3":0.778642},'
'"single_hit":{"0":1,"1":1,"2":0,"3":1},'
'"multi_hit":{"0":0.706125,"1":0.454976,"2":0.445512,"3":0.250522},'
'"context_relevance":{"0":0.805466,"1":0.410251,"2":0.75007,"3":0.361332},'
'"faithfulness":{"0":0.135581,"1":0.695974,"2":0.749861,"3":0.041999},'
'"semantic_answer_similarity":{"0":0.971241,"1":0.15932,"2":0.019722,"3":1.0}}'
)
def test_comparative_individual_scores_report():
data_1 = {
"inputs": {
"query_id": ["53c3b3e6", "225f87f7"],
"question": ["What is the capital of France?", "What is the capital of Spain?"],
"contexts": ["wiki_France", "wiki_Spain"],
"answer": ["Paris", "Madrid"],
"predicted_answer": ["Paris", "Madrid"],
},
"metrics": {
"reciprocal_rank": {"individual_scores": [0.378064, 0.534964], "score": 0.476932},
"single_hit": {"individual_scores": [1, 1], "score": 0.75},
"multi_hit": {"individual_scores": [0.706125, 0.454976], "score": 0.46428375},
"context_relevance": {"individual_scores": [0.805466, 0.410251], "score": 0.58177975},
"faithfulness": {"individual_scores": [0.135581, 0.695974], "score": 0.40585375},
"semantic_answer_similarity": {"individual_scores": [0.971241, 0.159320], "score": 0.53757075},
},
}
data_2 = {
"inputs": {
"query_id": ["53c3b3e6", "225f87f7"],
"question": ["What is the capital of France?", "What is the capital of Spain?"],
"contexts": ["wiki_France", "wiki_Spain"],
"answer": ["Paris", "Madrid"],
"predicted_answer": ["Paris", "Madrid"],
},
"metrics": {
"reciprocal_rank": {"individual_scores": [0.378064, 0.534964], "score": 0.476932},
"single_hit": {"individual_scores": [1, 1], "score": 0.75},
"multi_hit": {"individual_scores": [0.706125, 0.454976], "score": 0.46428375},
"context_relevance": {"individual_scores": [0.805466, 0.410251], "score": 0.58177975},
"faithfulness": {"individual_scores": [0.135581, 0.695974], "score": 0.40585375},
"semantic_answer_similarity": {"individual_scores": [0.971241, 0.159320], "score": 0.53757075},
},
}
result1 = EvaluationRunResult("testing_pipeline_1", inputs=data_1["inputs"], results=data_1["metrics"])
result2 = EvaluationRunResult("testing_pipeline_2", inputs=data_2["inputs"], results=data_2["metrics"])
results = result1.comparative_individual_scores_report(result2)
assert results.to_json() == (
'{"query_id":{"0":"53c3b3e6","1":"225f87f7"},'
'"question":{"0":"What is the capital of France?","1":"What is the capital of Spain?"},'
'"contexts":{"0":"wiki_France","1":"wiki_Spain"},"answer":{"0":"Paris","1":"Madrid"},'
'"predicted_answer":{"0":"Paris","1":"Madrid"},'
'"testing_pipeline_1_reciprocal_rank":{"0":0.378064,"1":0.534964},'
'"testing_pipeline_1_single_hit":{"0":1,"1":1},'
'"testing_pipeline_1_multi_hit":{"0":0.706125,"1":0.454976},'
'"testing_pipeline_1_context_relevance":{"0":0.805466,"1":0.410251},'
'"testing_pipeline_1_faithfulness":{"0":0.135581,"1":0.695974},'
'"testing_pipeline_1_semantic_answer_similarity":{"0":0.971241,"1":0.15932},'
'"testing_pipeline_2_reciprocal_rank":{"0":0.378064,"1":0.534964},'
'"testing_pipeline_2_single_hit":{"0":1,"1":1},'
'"testing_pipeline_2_multi_hit":{"0":0.706125,"1":0.454976},'
'"testing_pipeline_2_context_relevance":{"0":0.805466,"1":0.410251},'
'"testing_pipeline_2_faithfulness":{"0":0.135581,"1":0.695974},'
'"testing_pipeline_2_semantic_answer_similarity":{"0":0.971241,"1":0.15932}}'
)