haystack/test/components/embedders/test_azure_document_embedder.py

120 lines
5.3 KiB
Python
Raw Normal View History

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import os
import pytest
from haystack import Document
from haystack.components.embedders import AzureOpenAIDocumentEmbedder
class TestAzureOpenAIDocumentEmbedder:
def test_init_default(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
embedder = AzureOpenAIDocumentEmbedder(azure_endpoint="https://example-resource.azure.openai.com/")
assert embedder.azure_deployment == "text-embedding-ada-002"
assert embedder.dimensions is None
assert embedder.organization is None
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.batch_size == 32
assert embedder.progress_bar is True
assert embedder.meta_fields_to_embed == []
assert embedder.embedding_separator == "\n"
assert embedder.default_headers == {}
def test_to_dict(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
component = AzureOpenAIDocumentEmbedder(azure_endpoint="https://example-resource.azure.openai.com/")
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": None,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 5,
"timeout": 30.0,
"default_headers": {},
},
}
def test_from_dict(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
data = {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": None,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 5,
"timeout": 30.0,
"default_headers": {},
},
}
component = AzureOpenAIDocumentEmbedder.from_dict(data)
assert component.azure_deployment == "text-embedding-ada-002"
assert component.azure_endpoint == "https://example-resource.azure.openai.com/"
assert component.api_version == "2023-05-15"
assert component.max_retries == 5
assert component.timeout == 30.0
assert component.prefix == ""
assert component.suffix == ""
assert component.default_headers == {}
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
reason=(
"Please export env variables called AZURE_OPENAI_API_KEY containing "
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
"the Azure OpenAI endpoint URL to run this test."
),
)
def test_run(self):
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
# the default model is text-embedding-ada-002 even if we don't specify it, but let's be explicit
embedder = AzureOpenAIDocumentEmbedder(
azure_deployment="text-embedding-ada-002",
meta_fields_to_embed=["topic"],
embedding_separator=" | ",
organization="HaystackCI",
)
result = embedder.run(documents=docs)
documents_with_embeddings = result["documents"]
metadata = result["meta"]
assert isinstance(documents_with_embeddings, list)
assert len(documents_with_embeddings) == len(docs)
for doc in documents_with_embeddings:
assert isinstance(doc, Document)
assert isinstance(doc.embedding, list)
assert len(doc.embedding) == 1536
assert all(isinstance(x, float) for x in doc.embedding)
assert metadata == {"model": "text-embedding-ada-002", "usage": {"prompt_tokens": 15, "total_tokens": 15}}